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PREFACE

The 12th annual conference of the PME is the first meeting
in the history of the International Group for the Psychol-
ogy of Mathematical Education held in an East-European so-
cialist country. The conference takes place in the old
episcopal city Veszprem, from July 20th to July ?5th, 1988.

There are a number of different ways in which participants
at the conference may make a contribution: research reports,
poster displays, working groups /initiated in 1984/ and
disoussion groups /initiated in 1986/. One session is de-
voted to the preparation for the ICME-6 presentations of
the PME. An innovation at this conference is that following
each group of papers of similar topics a summary session
will be held to discuss and evaluate the achievements in
the given territory. The discussion sessions will be held
in the following topics:

1. Algebra
2. Rational numbers
3. Early numbers
4. Metacognition
5. Teachers' beliefs
6. Problem solving
7. Computer. .environments
8. Social factors

We would like to thank Thomas A. Romberg, Claude Cothiti,
Kathleen Hart, Richard Lesh, Tommy Dreyfus and Colette
Laborde for volunteering to chair and introduce these eval-
uation sessions.

87 research papers have been submitted to the conference.
All of them have been evaluated by at least two reviewers
and the final decision on the acceptance of the papers has
been done at a session of the International Program
Committee in Budapest, based on the reports of the re-
viewers. The members of the International Committee of the
MB and the International Program Committee have served as
reviewers for the submitted papers.

The order in which the research papers appear in these
two volumes is alphabetic /according to the first author
of the paper/ except for the invited plenary papers that
are taken first. Therefore the order of the papers in the
volumes does not necessarily reflect the. order of presen- .

tation within the meeting itself. Any particular paper can
be located by consulting either the table of contents at
the beginning or the alphabetical list of contributors at
the end. We would like to thank the International Program
Committee, the Local Organizing Committee and the reviewers
fo their assistance in the preparation of this conference.
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International Program Committee:

Chairman:
Secretary:
Members:

Jetties Surhnyi /Hungary/
Laszlo 1.161-6 /Hungary/
Andrhs Ambrus /Hungary/
Katalin Bognar /Hungary/
Joop van Dormolen /The Netherlands/
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Tommy Dreyfus /Israel/.

Local Organiziig Committee:

President:

Secretaries:

Ferenc Genzwein - general director
of 00K /Hungary/

Andrea Borbas and Maria Dax
/Hungary/

HISTORY AND AIMS OF THE PME GROUP

At oh Second International Congress on Mathematical Edu-
cation /ICME 2, Exeter, 1972/ Professor E. Fischbein of
Tel Aviv University, Israel, instituted a working group
bringing together people working in the area of the
psychology of mathematics education. At ICME 3 /Karlsruhe,
1976/ this group became one of the two groups affiliated
to the International- Commission for Mathematical
Instruction /ICMI/.

According.to its Constitution the major goals of the group
are:

1./ to.promote international contacts and the exchange of
scientific information in the psychology of mathemat-
ical education,

2./ to promote and stimulate interdisciplinary research
in the aforesaid area with the cooperation of pbychol-
o4ists, mathematicians and mathematics teachers,

3./ to further a deeper and more correct Underttanding
of the paycholocical aspects of teaching and learning
mathematics and the implications thereof.

MEMBERSHIP

1./ Membership is open to persons involved in active
research in furtherance of the Group's. aims, of pro-
fessionally interested in the results of such
research.

2./ Membership is on an annual basis and depends on
payment of the subscription for the current year
/January to December/
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3./ The subscription can be paid together with the
conference fee.

The present offioers'of the groUp are as follows:

President: Pearla Nesher /Israel/
Vice-President: Willibald Ddrfler /Austria/
Secretary: Joop van Dormolen /The Netherlands/
Treasurer: Carolyn Kieran /Canada/
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STREET MATHEMATICS AND SCHOOL MATHEMATICS
Terezinha Runes Carraher
Mestraclo em Psicologia

Universidade Federal de Pernambuco
Recife, Brasil

There are different ways of summarizing one's own

research. One is to retrace one's steps, to present a lived-
through experience, with its excitement, its disappointments,
its beliefs, its ideology, and its motives. It is a personal
account about one's research. .Another way is to choose a
theoretical framework which not have anything to do with how
you got to where you are in your work but which deepens the
understanding of the .questions you tried to addres My

attempt here will be to do both--to set the stage for the
analysis of street and school mathematics by following the
first studies and their developments and then try to organize
the findings by using theoretical framework to sort out the
similarities and . differences between street and school
mathematics. However,: before I start, I must acknowledge that
the research I will be reporting on resulted from a close
collaboration with Analncia Schliemann and David Carraher over
seven years. I am certain that neither the excitement in doing
this work nor the theoretical analysis which I am the presenter
of here today could have come about without them.

I. THE STORY OF THE STUDIES
Brazil has a capitalist' economy and a class structured

society. Closely associated with this class structure is the
phenomenon of school failure. Children from the dominant
classes by and large . are successful in school.' In contrast,
children from the working 'class fail in mathematics in school
in high proportions. In Brazil as everywhere else, explanations
for thi's class-related failure in schools evolved from blaming
the victim--that is, asserting that the children were lacking
in the required skills or in cognitive maturity and, for this
reason, did not learn mathematics--to blaming the social
system--that is, asserting that in a class-Structured society
schodls are set up exactly to maintain the social structure,
reproducing class differences in knowledge and culture.
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These two very different approaches have one thing in
common: they assume that children from the working class are
less knowledgeable, less competent, for example, in
mathematics, and that is why they fail. In either line of
explanation, evaluations of children's mathematical competence
are carried out from the school's viewpoint. Mathematical
skills, it is believed, are neutral: two plus two is four both
for the dominant and for the working class culture.

At first, we also thought so. We tried to find out why
working class children were failing so often in mathematics by
examining their basic competencies and the development of their
learning of school mathematics (Carraher & Schliemann, 1983;
1985). We chose Piagetian concepts (such as conservation,
class inclusion, and seriation) as ways of getting at what we
thought were "basic", "universal" and "culture- free"
competencies and chose some aspects of the local mathematics
curriculum (ability to solve addition and subtraction problems)
as ways of evaluating learning which had taken place in school.
We wanted to evaluate their learning of addition and
subtraction algorithms and see whether this learning correlated
with cognitive development measures. However, when we set out
to observe the children, they seemed to have their own ways of
calculating (Carraher & Schliemann, 1985) and did not prefer
the use of the algorithms we wanted to observe. When given
freedom, they would rather use their own routes for solving
problems; when using school-prescribed computation routines,
they were likely to fail. Moreover, when children were allowed
to solve problems in their own ways and when the type of
curriculum offered by school was controlled for, differences
between working class children and children from the dominant
strata tended to disappear. Yet, in school more working class
children failed, as usual -in our sample, 32% of the working
class children failed arithmetic at the end of the year while
only 2% of the middle class children failed.

These observations led us to question the school system's
capacity to truly evaluate working class children's abilities

18
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in Mathematics although we still did not know why the system
failed in this evaluation. Could it be that the development of
mathenmatical skills . is not a value-free question? Is
Mathematics not an exact science, imune to the quibbles and
quarrels of cultural relativism? Would not the evaluation of
mathematical abilities be above the cultural question?

We wondered whether we could find ways to observe more
clearly working class children's abilities in elementary
mathematics. We thought of the fact that their families'
income is often much too low for the family size and that
children are then engaged in the informal economy to help their
parents. They may, for example, sell fruits, vegetables,
popcorn, candy, or refreshments. That means that they often
have to calculate. If they truly lacked the elementary-school
mathematical abilities, how could they handle their everyday
life demands? From this informal observation of working class
children's competence, we designed a ,study through which we
compared five children's competence in everyday life with their
competence in a school-like situation ( Carraher, Carraher &

Schliemann, 1982; 1985). Starting out as customers, we

proposed purchases to the children 'and asked them about total
costs of purchases and change if we gave them different notes
as payment. Below is a sequence taken from this study which
exemplifies the procedure:

Customer/examiner: How much is one coconut?
Child/vendor: Thirty-five.
Customer/examiner: I'd like three. How much is that?
Child/vendor: One hundred and five.
Customer/examiner: I think I'd like ten. How much isthat?
Child/vendor: (Pause) Three will be .105; with three

more, that will be 2W. (Pause) I need four more.
That is... (pause) 315...I think it is 350.

Customer/examiner: I'm going to give you a five hundred
note. How much do I get back?

Child/vendor: One hundred and fifty.
When engaged in this type of interaction, children were

quite accurate in their calculations: out of "63 problems
presented in the streets, 98% were correctly solved. We then
told the children we worked with mathematics teachers and
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wanted to see how they solved problems. Could we come back and

ask them some questions? They agreed without hesitation. We

saw the same children at most one week later and presented them

with problems using the same' numbers and operations but in a

school-like manner. Two types of school-like exercises were

presented: word problems and computation exercises. Children

were correct 73% of the time in the word problems and 37% of

the time in the computation exercises. The difference between

everyday performance and performance on computation exercises

was significant. These results convinced us of two things.

First, street mathematics and school mathematics are not one

and the same mathematics. Second, Brazilian schools do not

acknowledge the existence of street mathematics, even if we all

.know of its existence through our everyday experiences. This

appears to be an instance of what can be called the ideology of

school mathematics: to ignore (or to treat as lesser

mathematics) solutions which' do not follow the school-

prescribed ways.

The next study was provoked by other researchers'

reactions to the findings. "This is not real mathematics, this

is bricolage" was a comment we met up with quite often. A
second comment was "the children think in concrete terms and

thus do better in situations in which there are. concrete
materials "; Our disbelief. in these reactions was strong--but

it was only a personal reaction. How could we find out .whether

street mathematics was the same as school mathematics in

cognitive terms?

In our next study (Carraher, Carraher & Schliemann, 1987)

16 3rd-grade children were interviewed by a researcher in their

own school. The researcher was introduced as a teacher

inte,--ested in how children solve problems. Children were asked

to 'solve problems in three different situations: a simulated

store, word problems and computation exercises. By working in

the school, we set up a situation in which the examiner-child

relationship would be pretty much the same throughout testing.

We arranged the groups of numbers and operation 'in a Latin

20
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Square ,so that they were the' same. across situations for

different children. By having a simulated store condition, we

hoped that children would resort to their street strategies in

solving problems. It seems that we were successful in

reproducing the difference between street mathematics and
school mathematics; problems in the simulated store and word
problem conditions were correctly solved 'significantly more
often than in the compUtation exercises condition, replicating

the results of the previous study.

Children's ways of solving problems were influenced by the

experimental conditions: .the simulated store yielded between 80

and 89% of oral calculations (with percentages calculated by

operation); the word problems yielded between 50 and 71/.; and

the computation exercises between 10 and 29%. There was also a

strong difference in accuracy when problems were solved orally

versus in writing. Table 1 shows the' percentages of correct'

responses per operation solved correctly- when children worked

through oral or written calculation.

Table 1

Percentage of correct responses. by operation and
type of procedure used by the -children (from Carraher, Carraher'

Schliemahn, '1987)

Oral Written
Addition 75 68
Subtraction 62 17

Multiplication 80 43
Division 50 4

When we controlled statistically for the type of strategy

used by the. children--that is, oral versus written--the

differences between the situations tended to disappear.

This study convinced us that the effect of the situation

upon children's performance was mediated by their choice of
strategy. Social situations seem to, determine how people' solve

problems and differences in strategies result in differences in

performance. In school -like situations, particularly in

computation exercises, children appear .to 'believe that written
mathematics is called for and try to use it even though they
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are less able with written than with oral mathematics. This
interpretation is consistent with educational goals and
educational practice in Brazil. In the simulated store,
children used oral mathematics, which is a usual form of
computation in street markets and serves both the purpose of
personal representation and interpersonal communication.
Vendors in street markets usually calculate for the customers
the total price of their purchases and count the change up from
the total to ensure that the customers recognize that they are
receiving the correct amount of change.

The explanation for working class children's failure in
mathematics in terms of lack of cognitive maturity no longer
seemed plausible after these initial studies. The children
were quite capable when calculating orally In contrast, the
observation of their errors when they attempted computation in
the written mode could be interpreted as resulting from "lack
of comprehension". The protocol below is a clear example of
comprehension in the oral mode although performance in the
written mode seems suggestive of lack of ability:

R., 8 years old, is solving 200 - 35 in the simulated
store condition; he writes down 200 - 35 properly
ailigne4 in the vertical form and proceeds as follows:
Child: FiVe to get to zero, nothing (writes down zero);

three to get to zero, nothing; (writes down zero);
two take away nothing, two (writes down two).

Examiner: Is it right?
Child: No! So you buy something from me, and it costs

35. You pay with a 200 cruzeiros note and I give it
back to you?

Examiner: Do it again, then..
Child (after writing down 200 - 35 in the same form as

above): Five, take away nothing, five (writes down
five). Three, take away zero, three (writes down
three). Two, take away nothing, two (writes down
two). Wrong again!

Examiner: Why is it wrong again?
Child: Now you buy something, and it costs 35. YoU give

me 200 and I give you 200 and 35 on top?
Examiner: Do you know how much it is?
Child: If it were 30, then I'd give you 170.
Examiner: But it is 35. Are you giving me a discount?
Child: One hundred and sixty five. (From Carraher,

Carraher & Schliemann, 1987).
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This study convinced us that lack of ability was not the

correct explanation for the children's failure in school maths.

Children's computation strategies in the oral mode contradicted

their apparent lack of ability when they worked in the written

mode. At first glance, however, oral procedures seemed

idiosyncratic and disorganized - -a feeling which has led authors

in the past to disregard these methods. It looked as if each

child designed each solution on the spot without any previous

direction. However, when we looked at the strategies used, and

not the specific steps carried out, there were two main ways of

solving computations orally. Addition and subtraction were

solved through decomposition; multiplication and division were

solved through repeated groupings. These procedures are not

exactly like school algorithms since the specific steps are not

foreseen in the -procedures.. They are rather like the

generative structures of language, which can generate an

infinite number of sentences that are totally different in

meaning but rest upon the same deep structures. In order to

characterize this flexibility, we called, oral procedures

heuristics instead of algorithms. Table 2 presents an example

of each of these heuristics.

Table 2

Examples of decomposition and repeated groupings
(From Carraher, Carraher & Schliemann, 1987)

Example of a solution through decomposition.
The child was solving the computation exercise "252
Child: "Take away fifty-two, that's two hundred, and
take away, that's one hundred and ninety-five".

- 57".

five to

Example of a solution through repeated groupings.
The child was solving a word problem which asked about the
division of 75 marbles among five boys:
Child: "If you give ten marbles to each one, that's fifty.
TI.Ltre are twenty-five left over. To distribute to five boys,
twenty-five, that's hard. (Experimenter: That's a hard one.)
That's five more each. That's fifteen".

However, we wondered, were we looking at atypical cases?

Or is street mathematics a pervasive phenomenon? More and more
we came to believe that the children we observed were not
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atypical. Pluncket (1979) had already mentioned the existence
of decomposition. Reed & Lave (1981) also found similar
mathematical procedures among the taylors in Liberia. Saxe &
Posner (1983) documented procedures developed outside school in
Papua New Guinea. Scribner and her co-workers (1984) found
several instances of mathematical problem solving at work which
did not follow the school-ways. ginsburg (1982) found oral
calculation in the Ivory Coast and in the United States.
Further studies in Brazil added still more evidence: oral 2
calculation through the same strategies was observed by

Schliemann (1984) among carpenters, by Acioly and Schliemann
(1986) among bookies taking bets, and by Carraher (1986) among
foremen in construction sites.

A third study followed in pursuit of the origin of the
knowledge of the numeration system so clearly displayed in
decomposition and repeated groupings. We wondered whether
dealing with money was a significant out-of-sch000l experience
which provided people with knowledge of the properties of the
numeration system in the absence of school experience.
Carraher (1985) worked with 72 pre-school children who . had not
yet received any instruction on writing numbers and 6 adults
who had never attended school either' in childhood or adult
literacy programs. Their understanding of numeration systems
was tested through questions about money either in verbal form
only, in the case of the adults, or with the help of a play-
money system, in the Case of children. Three aspects of the
'understanding of number systems were tested: (1) the ability to

.

differentiate between relative and abSolUte values (for
example, comparing the total buying power of four coins worth
one and four coins worth ten each); (2) the ability to
decompose values within the decimal system (for example, paying
65 when you have nine coins worth ten and nine coins worth one,
in the case of children, or figuring out what is the smallest
number of notes needed to pay 365 using only bills of 100, 10

and 1, in the case of adults); and (3) the. ability to write
numbers using the place value system. The first two abilities,
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which relate to what we call number meanings, clearly preceeded
the third, which refers to number writing. None of the
children Knew number notation although V4% of them were able to
understand the distinction between absolute and relative value

and 407. were able to combine different relative values to

compose different sums of money. . Among the adults, all were
able to understand the distinction between absolute and

relative value; four (out of six) were able to decompose

numbers in hundreds, tens, and units; and only two appeared
able to write numbers using place ,value. Through this study we
were able to determine the existence of an oral ,comprehension
of the baiic meanings of numeration systems in the absence of
knowledge of rules for writing numbers.

Now what type of mathematics is oral mathematics? If
people learn mathematical in everyday life, are the
resulting concepts different depending on whether they are
learned outside of school - without the assistance of an
instructor or in school through explicit teaching?

To deal with these questions, we will need to refer to a
theoretical framework which will be used in the comparison of

concepts.
A COMPARISON 'OF STREET AND SCHOOL CONCEPTS:

THE CASE OF ADDITION AND SUBTRACTION

Vergnaud (1985) has proposed a framework which we find
very useful for the comparison of concepts learned in and out
of school. According to Vergnaud, a Concept necessarily entails
a set of invariants, which constitute the properties defining a
concept, a set of symbols, which are a particular way of
representing the concept, and a set of situations, which give
meaning to the concept.

Invariants in street and school mathematics
Taking addition and subtraction as an example, we can see

that the invariants underlying, street and school mathematics
are the same;- decomposition and written algorithms are based
upon the property of associativity (see Resnick, 1986, and

Carraher Schliemann, 1988). In fact, if oral mathematics were
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to violate the. properties of operations, results could not be
correct. One example of decomposition will be reviewed below
(Table 3) in order to illustrate that, despite great
dissimilarities in the specific steps used in oral calculation,
both oral and written addition/subtraction rest upon
associativity.

Table 3
A comparison between decomposition

and the subtraction algorithm
Computation: 252 57
Example of an oral procedure observed: "Just take the two
hundred. Minus fifty, one hundred and fifty. Minus seven, one
hundred and fourty three. Plus the fifty you left aside, the
fifty two, one hundred ninety three, one hundred ninety five".
Steps used:
a: 252 - 57 =

b: (200 + 52) - (50 + 7) =

c: (200 - 50) + (52) - (7)
d: (150 - 7) + (52) =

e: 143 + (50. + 2) =

f: 193 + 2 =

g: 195.

Written procedure prescribed in school: Two minus seven, you
can't; borrow a ten. Five tens minus one ten, four. Two plusone ten is twelve; twelve minus seven, five. Four (tens) minus
five (tens), you can't; borrow from the hundreds. Two hundreds
minus one hundred, one hundred. Add,. one hundred to the four
tens, fourteen tens. Fourteen (tens) minus five (tens), nine
(tens). One (hundred) minus zero, one (hundered).
Steps used:
a: 252 - 57 =

b: (240 + 12) - (50 + 7) =

c: (240) - (50) + (12 - 7) =

d: (240 - 50) + 5 =

e: (100 + 140 - 50) + 5 =

f: 100 + 90 + 5 =

g: 195.

It can be easily recognized that both procedures work by a
series of decompositions of the minuend and subtrahend and
sequential operations according to the decomposition. The
particular decompositions chosen in written and oral procedures
are not the same; yet, the properties used, namely the
associativity of addition and of subtraction, are the same in
both procedures.
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Symbolic representation and its impact upon
street and school mathematics

Although street mathematics and school mathematics are
based upon the same invariants, there are differences in the
way subjects represent numbers across situations and solve
problems--that is, there are differences in the symbols used in
and out of school (see Carraher, .Carraher & Schliemann 1987,

Carraher & Schliemann, 1988, and Carraher & Carraher 1988).. In
oral mathematics, the relative meaning of the symbols is
preserved while in written algorithms this relative meaning is
set. aside and operations are carried. out upon the absolute
value. In oral mathematics, calculation tends to run from
hundreds to tens to units while in written mathematics
calculation tends to go from units to tens to hundreds, with
the exception of the division algorithm.

These differences can be understood (by analogy to
language) as reflecting different processes for generating
solutions to problems; while oral mathematics generates
computation strategies on the basis of semantic relations,
written mathematics generates solutions on the basis of rules
for exchanging values from one column to another, as pointed
out by Resnick (1982). These rules are in a sense .similar to
syntactic rules (like word order) but they are in some sense
also different from syntax because they work in ways which are
detrimental to meaning. The loss of meaning in written
mathematics was clearly documented by lrando (1988) who. asked
14 farmers who had little or no school instruction, 20 fifth
graders and 40 seventh graders from the same region to solve
some word problems and compared their problem solving
strategies and intervals of responses, finding great-
differences between the groups. For example, they were asked
how many pieces of wire with 1;5 meters of . length could be
obtained by cutting up a roll which had 7 m of wire in it. The
farmers responses, obtained ,through oral calculation, fell
between 4 and 7 pieces with 93% giving the correct answer. The
students responses fell between 4 and 413 pieces. These
extreme answers were given by students who carried out the
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algorithm for division (correctly or incorrectly) and did not

know where to place the decimal point. The loss of meaning

during calculation is likely to be responsable for the

acceptance of answers which indicated, that one could get more

than seven pieces of wire out of the Toll. These are absurd

answers because' anyone controlling for meaning would realize

that 7 m divided into pieces of 1 m (ignoring the decimal

point) yields '7 pieces; since 1.5. is bigger than 1, any

response greater than 7 is not sensible. Among 5th graders

40% of the answers were greater than. 7; 15Z of the 7th graders

produced such answers. In a second problem, subjects were told

that one farmer had harvested 20% more soy this year than the

year before and that his harvest in the previous year

corresponded to 150 bags; they were asked to calculate how many

extra bags the farmer harvested this year. Fifth-grade

students had learned formulas for calculating percentages; 7th

grade students had learned both formulas for calculating

percentages and the proportions algorithm (a /b: x/c). Among

farmers, 931 answered correctly using oral calculation . and one

gave an answer which we consider absurd since 30/ cannot be

more than 1001 and his answer was 450. Fifth and 'seventh

graders gave 30X and. 35% correct responses, respectively.

Their interval of responses varied between 3 and 3,000 bags;

the extreme responses were again obtained through the use of

algorithms coupled with failure to . evaluate the meaning of the

answer when one doesn't know where to locate the decimal point.

Grando's study also provides an analysis of how meaning is

lost in more complex pr'oblems in the mathematization of the

situation itself. She analyzed the implicit models used in

mathematizing situations by looking at the sequences of

operations performed, and searching for .their meaning in terms.

of the problem - situation. For example, subjects were asked to

find out . how many tea hushei were needed to fully plant a

rectangular area 60 m x 40 :m knowing that the space between the

tea bushes has to be 4 m by 3 m., The problem was explained

carefully to subjects with the help of a drawing in scale and
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the meaning of spacing the bushes in 4 by 3 explained to

students in detail. She found that three models described the

farmers' solutions and 13 were needed to describe the students'

solutions. The models used by farmers were all meaningful,

although two were incomplete in their analysis of the problem

and, therefore, yielded wrong answers. One model consisted of

finding out and then multiplying the number of . rows by the

number of columns of tea bushes; 58% of the farmers, 5% of 5th

graders and 30 % of seventh graders used this model. A second

involved obtaining the area of the rectangle and dividing it by

the number of rows--an incomplete model, since a subsequent

division by number of columns or a division by area needed by

each tea bush would have been appropriate; 25% of the farmers

used this model but no students did so. However, 5% of the 7th

graders used the full model, dividing the total area by the

area per tea bush. A third model, used by 8% of the farmers

but not used by students, was the calculus of the number of

rows or columns without completion of the solution. The

remaining 95% of 5th graders and 65% of 7th graders attempted

14 different combinations of the four arithmetic operations,

only one of which is amenable to interpretation (addition- -

instead of multiplication - -of the number of rows and number of

columns, a procedure consistent with these students' frequent

conception of area as an additive relation of length and

width).

These examples show that learning mathematics outside

school does not always lead to correct responses even when the

content of the problem is familiar. More 'importantly, they

strongly indicate that even wrong responses tend, to be obtained

in sensible ways. In contrast, mathematics learned in school

results in a high percentage of what we can call "basket"

models in problem solving: many students just seem to throw the

numbers and operations together in a basket instead of

analyzing the meaning of the problem situations.

EST COPY AVAILABLE
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The situations in which conceptS are used
in street and school mathematics

The differences in symbolic representation discussed above
may result in yet other differences between street and school
mathematics. Any representation stresses some aspects of what
is being represented and leaves other aspects- out of focus. If
we consider representation as mediators of thinking, diverse
forms of representation will result in diverging recognition of
similarities. and differences between problem 'situations. In
oral mathematics, representation seems to be closer to the
meaning of the problem situation; when working with written
algorithms, we seem to move away from meaning in general and
work more with relations between numbers: As a consequence,
oral and written mathematics may apply their concepts to
different sets of situations, thereby defining concepts of
different extensions.

This possibility was explored with respect to the concepts
of addition and subtraction by Carraher (1988) in a study with
90 adults . attending night school, all normal and comopetent
people in their own lives but who had no opportunity to attend
school as a consequence of their socio-economic position. It
was reasoned that their concepts of addition and subtraction
would reflect . their everyday experiences and not school
learning if they were tested in their first year of school,
when the curriculum emphasizes primarily reading instruction.
As level of schooling increased, their concepts would probably
approach the school concepts of addition and subtraction.

Previous studies (Carraher & Bryant, 1987; Carpenter &

Moser, 1982) had suggested that children's strategies in
solving addition and subtraction word problems change with
grade level from attempting to represent the situations to
representation of the arithmetic operations (that is, the
numerical calculus). Everyday meanings for addition are the
union of two sets (for example, "I, have two yellow flowers and
three red flowers") or an increase in amount (for example, "I

had two flowers and got three from a friend"); the basic
everyday meaning of subtraction seems to be a decrease in
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amount (for. example, "I had three coins and lost one").
Problem solving strategies which represent the situations and
those which represent the numerical calculus required for
solution may result in the same or different conceptions of
problem situations. For example, the problem "Mary had some
stamps in her stamp collection. She got 27 stamps from her
friend and now she has 32. How many did she have to begin
with?" is conceived as a subtraction problem if we thinK of the
calculation we would have to write down in order to carry out a
computation algorithm leading to the answer; the computation
would be 32 - 27. However, in oral mathematics one can simply
count up from 27--28, 29, 30, 31, 32--Keeping track. of the
number of fingers used while we counted up; we would find the
solution through a process which represents what happened in
the problem situation, an addition to the stamp collection.
The school concept of subtraction used in this case is not that
of a subtractive. situation but one of subtraction as the
inverse of addition. For this reason, I will refer to problems
such as this as "inverse problems". In contrast, in "direct
problems" the numerical calculus required for solving the
problem and the representation of the situation call into play
the same operation.

Comparison problems, which are also related to addition
and subtraction, seem to be solved by children before they have
had much schooling through matching strategies (see Carpenter $
Moser, 1983). As long as this type of strategy is the only one
available to the children, it appears to remain separated from
the concepts of addition and subtraction; subjects can solve
the problems but do not Know which operation to usef since their
solution is obtained neither by addition nor by subtraction.
Would unschooled adults recognize the operations called for in
solving comparison problems or would their strategies reflect
more a representation of the situation than a representation of
the operation?

The adults interviewed in this study were in three grade
levels, having had one, three or five years of school
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instruction. They were asked to solve three direct

addition/subtraction problems, three inverse problems and two

comparison problems. They were given a calculator in order to

avoid calculation errors, were taught how to carry out the four

arithmetic operations with the calculator and were encouraged

to use it during the experiment. Numbers in the problems were

two-digit numbers to avoid memorized solutions and make choice

of operation instrumental to problem solving. Two dependent

variables were examined as a function of problem-type: accuracy

of solution and choice of operation. Tables 4 and 5 summarize

the results of this study. The results for comparison problems

which pose the question "how many fewer?" and for those with

the question "how many more?" were . separated because "fewer"

and ."minus" are expressed, by a single word in Portuguese

(menos) and "more" and "plus" are also expressed by a single

word (macs).

Table 4
Percentage of correct responses
by problem type and grade level

Problem type grade level
First Third Fift4i

Direct . 78 92 . 92
Inverse 40 58 67
Comparison (how many fewer?) .56- 87. 77
Comparison (how many more?) 40 67 67

We can see that each group of subjects clicl consistently

better when the everyday concept coincided with the numerical

calculus than when it did not--an observation which indicates

that the school concept of addition/ subtraction is not fully

accomplished by all adults even at the fifth grade . level.

Table 5 indicates the percentages of choices of (a) the

correct operation according to the school model of the problem,

(b) , the inverse operation, and (c) the use of another strategy

(e.g:, counting) as a function of problem type. It is easy to

recognize that the same trends observed with respect to correct

responses are obtained when choice of -operation is taken as the
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dependent variable: third.- and fifth grade adults choose' the
operation consistent with the school model more often than
first-grade adults.

Table . 5
Percentage of choice of operation
by problem type and grade level

Problem type faracle level
First Third Fifth

Direct Correct 89 Correct 93 Correct 94
Inverse 8 Inverse 3 Inverse 2
Other 3 Other 4 Other 4

Inverse Correct 47 Correct 57 Correct 57
Inverse 50 Inverse 35 Inverse 35
Other 3 Other 8 Other 8

Comparison Correct 74 Correct 86 Correct 86
(how many fewer?) Inverse 22 Inverse 11 Inverse 7

Other 4 Other 3 Other 7

domparison Correct 38 Correct 57 Correct 60
(how many more?) Inverse 52 Inverse 33 Inverse 33

Other 10 Other 10 Other 7

Despite the fact that adults with very little schooling
can correctly. solve additions and subtractions, displaying an
understanding of the same invariants that define school
concepts, they use concepts of different extensions, because
their concepts are applied to a set of situations which differs
from the concepts we teach in school. Addition and subtraction
concepts as we use them presently in school are a specific,
culturally developed way of conceiving problems which has to be
learned, by .'people even if they already understand the basic
invariants of addition. and subtractibn.

III. CONCLUSIONS .

Summing up this discussion of research about .street and
school mathematics, some similarities and differences will be

pointed out.
Many invariants of mathematical concepts taught in school

appear to be quite basic and necessary for solving problems in
everyday life. These invariants can be understood outside
school,' without the benefit of teaching, through the
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understanding of problem-situations. These basic invariants
are perhaps analogous to core semantic structures of language;
their understanding can generate solutions to problems as
semantic structures can generate linguistic expression.
However, linguistic expression is not only a matter of meaning
but is a
particular

matter or graMmar also -- particular grammars of
languages. In mathematics, like in language, we

must deal with particular and arbitrary ways of representing
mathematical meanings. When linguistic expression violates the
specific grammatical rules of our language, as it happens when
a foreigner speaks to .us, we have difficulty in finding the
meaning. Similarly, when mathematical solutions to problems
deviate from the conventional ways, they are hardly ever
recognized as appropriate by teachers.

Granting the similarities in invariants of concepts
learned in and out of school, let us sum up the differences.

(I) Brazilian street mathematics is oral both in the sense
that it is spoken and in the sense that it
communication.
for

School
communication

developed ways of

mathematics
but for
thinking

the
and

is written; it
transmission
representing

is used for
is not chosen
of culturally
concepts and,

perhaps more importantly for the functioning of schools, for
the evaluation of individual children's work. Correct
responses given in tests without the "proper" written
calculation receive at best partial recognition in Brazil.

(2) Mathematics learned outside school is a tool for
solving problems in meaningful situations. In school we teach
mathematics as an object; applications, when used in the
classroom, tend to come after the teaching of

(3) Mathematics learned outside school is
development of problem solving strategies
representation of the problem situation. The

the model.
conducive to
which
choice

the
reveal a
of models

used in problem solving and the interval of responses are
usually .sensible even though not always correct. Students
using their school mathematics often do not seem to keep in
mind the meaning of the problem, displaying problem solving

34



19

strategies which have little connection with the problem

situation and coming up with and accepting results which would

be rejected as absurd by anyone concentrating on meaning.

The meanings of problem situations are not always absent
in representations in school mathematics. The difference
between fractions and percentages, for example, is mostly a

difference between general part-whole relationships, which are
treated as fractions, and a specific situation, in which the
whole is equal to 100. However, the similarity of the

invariants underlying the two concepts is not usually pointed
out to pupils in Brazil. School mathematics separates

fractions and percentages as different topics with different

written procedures for finding equivalences; although meaning
is in some sense a part of the separation of fractions and
percentages as different topics in mathematics,

during teaching is still placed upon rules.

(5) Representation of meaning of problem

the emphasis

situations may
result in different extensions for concepts developed in and
out of school. When cultural artifacts--such as calculators--

embody the school concept, they may be of little

who have learned mathematics only outside, school.

The differences pointed out above have some implications

for, mathematics education. Puilding bridges between street and

school mathematics appears to be a route worth investigating in

education. These bridges may sometimes be built through
finding out what pupils already know from their out-of-school

mathematics curriculum and let them use and expand this
Knowledge in school. Sometimes they may be built by using in

use to those

school problem situations which can be

by pupils without focusing so much on

which have not been explored enough so

analized and understood

rules. These are routes

far.

However, there is one issue in mathematics education which

can be sorted out on the basis of these studies. I

it is now clear that mathematics can no longer be

the gate-keeper which sorts out the academically

think that

treated as

able from
those who are not gifted enough. Any normal child must be
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treated as capable of learning elementary school. mathematics- -
especially if we are able to discover situations in which the
mathematical' properties we 'want children to understand are
genuine parts of situations that we present to children and
allow them to master over time while we make available to them
representations current in our culture of 'mathematics
classrooms. If we succeed in doing this, our pupils may become
skilled in analyzing problem situations, in generating meaning-
sensitive plans to solve problems, in appropriating for their
own use our mathematical representations and ideas, and. may
actually come to enjoy mathematics and see it as valuable from
their own perspective.
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A LOOK AT THE AFFECTIVE SIDE

OF MATHEMATICS LEARNING

IN HUNGARIAN SECONDARY SCHOOLS

Sandor KLEIN 1/

and

Gustav M.HABERMANN
2/

The aim of this presentation is 'to provide an empirical survey

of some facts of Hungarian mathematics education and its

psychological conditions.

MATHEMATICS EDUCATION IN HUNGARY

Hungary has for centuries had a good reputation of being a land

which breeds great innovators of mathematical thought. It may be

well known also that several outstanding personalities of

mathematical learning and problem solving, as well as mathematics

teaching, started their career as Hungarians - from Gyorgy Pdlya

to Zoltin P.Dienes, to mention just a few.

The everyday setting and process of mathematical education at

primary and secondary levels, however, does not always confirm

expectations based on that faMe. There is great diversity
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allowing for good achievement and severely disadvantaged croups

and practices.

The historical determinants of the present-day situation can be

traced back to 1962 when an international conference in

mathematics learning took place in Budapest. Among other

contributors, Z.P.Dienes explained to participants the

mathematical, psychological, and educational principles of a

renewed mathematics teaching. Encouraged by the scientific

activity of Dienes and others, Tamas Varga undertook the

formidable work of introducing one of the best balanced methods

inside the "New Mathematics" movement experimentally. Later, it

was subjected to psychological measurement. The method came to

be known as the 'composite method' or the'O.P.I.2/ Mathematics'

project. It is well documented in educational literature (VARGA,

1962; -1964; 1965; 1967; 1972).

Small scale experiments being carried out from the early-1960s

to 1974 led to a nationwide implementation, in eight-grade

Hungarian elementary school, of the Varga curriculum and metnod.

It replaced the conventional curriculum in a gradual fashion,

reaching the final grade of elementary school in 1980(VARGA,1987).

The '0.P.I.smethod' succeeded in combining radical, even

avantgardistic, components with' ones satisfying traditional

requirements and needs of teaching arithmetic (cf.KLEIN,1987).

Although it is a rare phenomenon that such an innovative system

of ideas breaks through and becomes implemented nationally, that

meant a transformation of the project as well. Practicing

teachers and especially teacher training institutions were

unable to fully substantiate new ideas in their practical

programmes, thereby causing an at least initial loss of several

important ingredients. Some authors even describe a deterior-

ation of original advantages after the method was embodied in a

central curriculum. The original aims of the 'composite' method

stressed -- apart from content-related objectives

psychological priorities like enhancement of creativity,

increasing student motivation, building favourable attitudes
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toward mathematics, reducing school anxiety, developing

linguistic--communicative skills, and the like. Including novel

subject matter (probability, statistics, mathematical logic,

vector spaces, topology etc.) in curricula was seen by

innovators as a basis of presenting students thought-provoking,

challenging tasks. The objectives of the 'O.P.I. method' were
not, however, meant to be solely realised by content change;

rather, by enriching classroom methods of teaching (e.g.

discovery method, cooperation in small student groups,
experiential learning of concepts from concrete embodiment,
etc.)

During nationwide implementation, content areas typical to "New

Mathematics" were being reduced. Deterioration of the whole

process was mainly characterized, however, by inadequate

application of classroom teaching methods. We were aware that

changing of methods necessitated deep changes in teacher

personality, a rearrangement of several value and attitude

structures, and dissolution of habituated behaviours. The

teacher the new process envisaged was, after all, a professional

in a different sense: facilitator and animator of student

learning, instead of a transmitter of mathematical knowledge

and ready-made solutions.

Our primary interests as psychologists in a number of

consecutive projects (1969--1987) were

(i) to describe psychological effects of Varga's method and of

the nationally implemented version (involving effects on

abilities, skills, attitudes, orientations, motivational

factors, and holistic patterns of personality);

(ii) to verify the psychological hypotheses derived from the

innovative programme concerning distinctive effects on

children exposed versus not exposed to the O.P.I. method

(or its later implementation).

Extensively reported findings on elementary school mathematics

learning could be summarized by saying that only classrooms

where pedagogical principles of the 'composite' method were

genuinely followed could give predicted outcomes in personality
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and performance. Statistically significant psychological changes

could be expected to occur where educationally significant

changes in teaching and learning were observed.

SOME EMPIRICAL FINDINGS

In the following the scope will be limited to some empirical

data concerning final grades of secondary schools. They

constitute only a selection of simple descriptive results. As

opposed to primary education, secondary schooling is not

compulsory in Hungary, which may imply'a practical possibility

of higher niveau and greater divergence (among schools,

programmes, classrooms, or among individuals). Secondary

mathematics education was able to follow the wake of modernizing

in primary mathematics with a substantial delay. In recent

years, freedom of secondary institutions to decide on curricular

options, enrichment, special programmes etc. was increased

markedly. That may be conducive to faster changes in methods and

results of secondary mathamatics education as well.

The two main types of secondary school in this country are

grammar schools and 'specialized vocational secondary schools'

(hereinafter 'SVSS'). Other types rarely offer four-year courses

and almost never a certification of maturity entitling the

student to apply to enter a university or higher college.

Data in the following sections are taken from the system RMPP,

extension of the Hungarian (Population 'B') data set of the

Second International Mathematics Study of IEA1/. All results are

based on nationally representative samples.

A portrait of teaching: Time budget of activity forms

A relatively detailed and reliable picture of classroom

activities can be drawn from time budget analyses. Table 1 shows

allocations of time (measured in minutes per week) for specific
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pedagogical activities. These data stem from teacher estimates,.

The teacher sample is not only representative but quite

heterogeneous along several dimensions. Here follow some

descriptive figures also to characterize the population of

secondary mathematics teachers in Hungary. The age of teachers

in the sample varies from 26 to 64 years (average 40.2 years).

Their practice in school ranges from 1 to 43 years (average

16.2), while practice in fourth grade, the measurea student

cohort, from 1 to 35 years (average 10.0). They had received

8 to 27 terms (semesters) of higher mathematical and pedagogical

education; the average is 9.2 semesters.

Hungarian secondary school mathematics teachers are overstressed.

They have to teach an average of 25.4 periods per week (45 minu-

tes each), of which 18.5 are periods of mathematics. The other

subjects are usually physics or other natural science subjects.

A teacher is normally requested to lecture in two fourth classes.

The common practice, however, is that most teachers teach lower

secondary school classes as well, the average number of which is

3.1. Consequently, an average mathematics teacher has to be in

contact with 5 different classes; as the usual number of students

is over 30, this means a total of 150 children. Such an amount of

work is done in an environment where heavy duties (mainly

clerical) outside classroom jobs are burdened on teachers, and

salaries are significantly lower than that of skilled factory

workers.

Table 1 gives the original amounts of time estimateu uy teachers

for ten predefined categories of activity ('Preparation for

classroom work outside class', 'Grading student papers and tests',

etc.). Each estimate was obtained once for the last full week

before data collection and once for a "typical", average week.

The estimates may be biased by the teacher's general tendency of

over- or underestimation.

In Table 2, proportions (%) of the same durations are given as

compared to sum totals of three larger blocks of responses

(separated by horizontal lines). Each estimate was obtained once

for the last full week before data collection and once for a
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TABLE 1

Number of minutes allocated by teachers to specific catagories

of activity

Hungarian secondary school teachers, N = 94

x

Week before
data
collection

Preparation and planning
outside classroom

Grading student papers,
quizzes, tests outside class

Explaining mathematics content
new to the class

Reviewing mathematics content
not new to the class

Routine administration

Establishing class order,
disciplining students

Giving tests and quizzes to
whole class

Individual student work
-(seat or blackboard work) in .class

Frontal lecturing and
explanation

Small group work in class

"Typical",
average
week

134.8 144.9

142.3 98.2

277.1 243.1

18.0 74.5

127.3 77,0

14.7 16.0

3.7 4,9

163.7 171.4

34.2 29.6

70,3 67.2

44,1 64.1

12.6 15.6

167.2 176.5

:4.5 BEST COPY AVAILABLE
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TABLE 2

Proportion of time allocated by teachers to specific categories
of activity

Hungarian secondary school teachers, N =94

x
(of % Proportion)

Week before "Typical"
data average
collection week

Preparation and planning
outside classroom 48.6 59.6

Grading student papers,
quizzes, tests outside class 51.4 40.4

100.0 100.0

Explaining mathematics content
new to the class 11.0 43,5

Reviewing mathematics content
not new to the class 77.8 44.9

Routine administration 9.0 9.3

Establishing class order,
disciplining students 2-3 2.9

100.G 100.0

Giving tests and quizzes to
whole class 20.5 26-8

Individual student work
(seat or blackboard work) in class 42.0 38.1

Frontal lecturing and
explanation 26.4 36.3

Small group work in class 7.5 8.8

2: 100.0 100.0
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"typical ", "average" week. The estimates may be thought to be

biased by teachers' general tendency to over- or underestimate.

Therefore, percentages'are more reliable than absolute values.

Time assigments concerning last week are more or less correct

reports of what happened the week before: "Typical week" ratings

may reflect normative elements more than factual memory. As shown

by data from "last week" assignments, e.g., teachers spent more

time with grading student work than with preparing for classroom

periods. In "typical" wedcs, however, they reported to spend much

more time in preparation than in reviewing student work.

During preceding week, teachers spent about seven times more

minutes with reviewing material already taught; in the pattern

of "typical" week, newly explained and reviewed material would

consume approximately the same amount amount of time (Table 2).

Outside-class activities increase the already mentioned large

number of periods ( J25 hours per week) by at least 4 additional

hours. Half of the latter are spent by preparation, another half

by grading papers and tests. It is quite clear that it would be

advisable to allocate more time for preparation than for grading.

Frontal explanations are certainly not the best way of teaching

mathematics. ?urther, if we accept data on "previous week" as

reliable it is striking that the proportion of reviewing to

exposing new material is so high.

Although teachers estimated administration and disciplining at

low levels in their time budgets, classroom and school

observations as well as case studies seem to indicate that the

last two forms of activity occur more frequently than preferable.

These are forms of activity constantly discussed: they have been,

on one side, managerially required, on the other, stigmatized,

in the last decade. Teachers may have been .over-anxious in giving

their proportions. The low figure (.)8%) obtained for small group

work appears, however, like an bverestimation when relying on

classroom observation dataY
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Mathematical skills and abilities in students

As the main focus of the empirical part of this paper will be on

attitudes toward mathematics in students, and their relation to

teacher attitudes, only a brief point is made concerning student

skills. If standardized, rotated mathematics tests of IEA

(carefully adapted to Hungarian terminology, curricular content,

and teaching traditions) are accepted to measure 'mathematical

skills' or 'ability', results show that the student population

is .divided between extremes. Table 3 shows averages of TTGTD, an

overall score, for various, groups of institution and curriculum

types. TTGTD'is an avdrage'of two full-test-indices computed

over weighted item scores. The average skill level of the

enriched Mathematics 11 grammar school curriculum group is about

five times higher. than the Kindergarten nursing SVSS (D)

mathematics curriculum group.

Interestingly, these enormous differences do not stem from total

unfamiliarity of sections of mathematical content. Items of

rotated tests were evaluated frpm the viewpoint of whether the

student was exposed to the specific content of the item or not,

and if yes, in the academic year of measurement or before. Items

judged 'certainly taught' were More numerous in SVSS curricular

groups 'C' and 'D' than in any other curricular group for the

year of measurement (RADNAI-SZENDREI and HABERMANN, 1984). As

for the previous years, 'certainly taught' items were only

slightly more numerous in Mathematics 'I' and 'II" of grammar

school than in other curricular categories.

Attitudes of students toward mathematics

A point to be made in somewhat more detail in this paper is the

role of affective (student 'and teacher) characteristics in

Hungarian mathematics education, 'a problem in the centre of

empirical investigations within 'Second International Mathematics
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TABLE 3

Difference of curricular sets of cases on an.overall performance
measure of rotated standardized mathematics tests

Hungarian secondary school students, Ni.,0 2450

Grammar schools
Curriculum "Mathematics IT" (special)

Grammar schools
Curriculum "Mathematics I" (special)

Specialized vocational secondary schools
(SVSS),
Curriculum F
(Direction Computing services)

Grammar schools
Basic curriculum

x

13.41

8.68

6-03

5.41

SVSS,
Curricular group A/B/E
(Direction Industrial and agricultural
professions) 4.87

SVSS,
Curriculum C
(Direction Health and medical professions) 3.39

SVSS,
,Curriculum D
(Direction Kindergarten nursing)

By two-tailed t-test, any pair of the above
curricular groups shows a difference along
achievement scores at p< 0.001 except
Grammar schools/Basic versus SVSS/Curriculum F
where the difference is significant at
the 0.05 > p > 0.01 level.

BEST COPY MIAMI
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Study' and 'RMPP' data systems. Mathematics has for a long time
been a terrain to discover patterns of affective relations toward
a school subject and its related activities (DUTTON, 1954, DUTTON
and BLOM, 1968; MAERTENS, 1968, etc.). Separated from variables
characterizing overall motivational states and processes of
students, school subject specific affective variables were
investigated in terms of 'interests', 'beliefs', 'views',
'opinions', 'preferences' and 'attitudes'.&' As BLOOM (1976) has
noted there is no clear conceptual demarcation among any pair of
these constructs. All of them presuppose, however, 'a continuum
ranging from positive views, likes, or positive affect toward a
subject to negative views, dislikes, or negative affect toward the
subject' (BLOOM, op.cit., p.77). One can devise more or less
parsimonious sets of concepts and operationalizations for such
a continuum. In his 'Model of School Learning' (CARROLL, 1963)
and even its extensions (e.g., 1984) John B.Carroll united
affective characteristics under the name of 'perseverance',

operationalized by duration of time the learner is willing to
spend in learning2 ". Following empirical investigations,BLOOM
(1976) could build a conceptually richer model in which affective
entry characteristics are subdivided into constructs termed

'subject-related affect', 'school-related affect' and 'academic
self-concept'2/. When using 'attitude' (toward mathematics) below,
we would not like to suggest anything specific in social-psycho-
logical definitions of that term. Rather, we shall apply the
neutral term 'opinions about mathematics' for item variables
(attitude scales) and the term 'attitude' simply for empirically

verified higher-order structures from these measured items. In
this we follow the general terMinology of IEA studies (KIFER,1979).

In the following section, univariate descriptive data of two
different sets of attitudinal (opinion)2 / variables concerning
mathematics will be presented. First, affective components
related to forms of mathematical activity in'school will be
treated. Second, components pertaining to mathematics as a
subject and as a science at a more general level will be
discussed.
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The affective instrument of IEA Second International Mathematics

Study identified 15 forms of mathematical activity most commonly

encountered in school life. These were: 'Checking an answer to a

problem by going'back over it'; 'Memorizing rules and formulae';

'Solving word problems'; 'Getting information from statistical

tables'; 'Solving equations'; 'Proving theorems': 'Using vectors';

'Working with complex numbers'; 'Investigating sequences and

series'; 'Differentiating functions'; 'Drawing graphs of

functions'; 'Finding a limit of a function'; 'Integrating

functions'; 'Determining the probability of an outcome'; 'Using

a hand-held calculator'. Opinions concerning each of the above

activity forms were judged by students along three dimensions:

Importance (important-unimportant), Difficulty (easy--difficult),

and Preference or Likedness (liked--not liked).

Table 4 selects among the Importance ratings only those categories

of activity which were assigned "extreme" values. Hungarian

secondary school students judge the memorization of rules,

getting information from statistical tables, and checking answers

as most important mathematical doings within school. Only 'one

item exceeded the conceptually negative limit 3.5 (near to the

scale pole 'not important at all'), i.e. the use of hand-held

calculators. At the time of measurement, portable calculators

were already relatively available and inexpensive in Hungary, but.

in-school calculator use was at many places discouraged or

forbidden.

If the Difficulty ratings are ordered (Table 5) calculator use

occupies the first place among easiest activities. The next two

forms, 'Checking answers' and 'Drawing function graphs' are,

however, among the ones rated very important earlier. Two items

similarly high-placed in the importance group, 'Proving theorems'

and 'Solving word,problems' are listed as judged most difficult.

There is no stereotyped inference, therefore, in student thinking

that it is the set of subjectively difficult activities which are

really important. Whereas 9 out of 15 activities were evaluated

rather important, only 3 of the same exceeded the limit among

difficulty ratings (easiest items). The great majority of

activity forms, at least when analysed over the entire sample,
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TABLE 4

Attitudinal statements : Ratings of importance
Hungarian secondary school students, Nes" 2450

1 most important, ... 5 least important
15 activity forms rated

FORMS OF MATHEMATICAL ACTIVITY
Rated most important (x 4; 2.5)

Memorizing rules and formulae

Getting information from statistical tables

Checking an answer to a problem

Proving theorems

Drawing graphs of functions

Solving word problems

Integrating functions

Differentiating functions

Finding a limit of a function

Rated least important (X >3.5)

1.69

1.84

1.89

2.20

2.26

2.26

2.38

2.39

2.48

Using a hand-held calculator 3.55

TABLE 5

Attitudinal statements : Ratings of difficulty
Hungarian secondary school students, Nr/2450

1, easiest, .... . 5 , most difficult
15 activity forms rated

FORMS OF MATHEMATICAL ACTIVITY

Rated easiest (x C 2.5)

Using a hand-held calculator

Checking an answer to a problem

Drawing graphs of functions

Rated most difficult (x ). 3.5)

x

1.68

2.29

2.45

Proving theorems 3.83

Solving word problems 3.55
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are perceived neither peculiarly difficult nor easy by students.

Still less of the activity forms reached pronounced likedness

or dispreference (Table 6). Calculator use (an item already

identified as least important and easiest among all) is the most

preferred. Solving equations is another form'markedly preferred.

Proving theorems and memorizing rules/formulae are the items

looked upon with aversion (cf. next section on more general

opinions).

Apart from mathematical activity forms, statements describing

personalized positions concerning mathematics at a more general12/

level were also judged by students, in the format of modified

Likert scales. statements unequivocally agreed and disagreed with

are listed in Table 7. The five statements which showed widest

consensus can be divided among three attitude areas. Two of the

statements relate to mathematical self-concept (cf. BROOKOVER;

SHAILER and PATTERSON, 1964; FARQUHAR and CHRISTENSEN, 1967;

HELMKE, 1987, 1988) expressing aspiration to good achievement

and placing self-directed learning at a high value. One dimension

relates to gender probleMs, while the remaining two, to beliefs

concerning mathematical knowledge. Students hold that mathematics

'helps to think logically' and that there is 'more than one

solution' to most problems. They disagree with several statements

in direct connection.with the ones agreed upon. Two statements

negated in rating are opposites of the gender 'statement in the

agreed group. The assertion that, one would not voluntarily learn

mathematics is expressing an idea opposed to the agreed-upon

'statement 'I really want to do well in mathematics'. At a basic -

leVel, these pairs of judgements corroborate each other and point

at the reliability. of not only the instrument as such but of

interpreting item-level data as.well. Students mostly are not

afraid of mathematics. They have reservations; however, as to the

everyday utility of mathematics and practice dispensing with the

use of rules (trial and error). They construe mathematics as more

than something 'to be memorized'.'The last two items are not

necessarily in contradiction. As the previous group of items

revealed, Hungarian secondary school students judge 'memorizing

rules' as highly important. At the same time, they disprefer
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TABLE 6

Attitudinal statements: Ratings of preference
Hungarian secondary school students, Nr\J2450

1, most liked,.... 5,1east liked
15 activity forms rated

FORMS OF MATHEMATICAL ACTIVITY
Rated most liked (R < 2.5)

Using a hand-held calculator

Solving equations

Rated least liked (x > 3.5)

x

2.30.

2.31

Proving theorems 3.65

Memorizing rules and formulae 3.55

TABLE 7

Attitudinal statements about mathematics
(as a subject and as a science)
Hungarian secondary school students, N tNi 2450

1, strongly disagreed with, ..

.5 strongly agreed with
45 statements rated

STATEMENTS
Agreement strongest (x > 3.75)

I feel good when I solve a mathematics
problem by myself

A woman nees a career just as a'man does

Mathematics helps one to think logically

There are many different ways to solve most
mathematics problems

I really want to do well in mathematics

Disagreement strongest 6Z4( 2.25)

Learning mathematics involves mostly memorizing

It scares me to have to take mathematics

Boys need to know more mathematics than girls'

Mathematics is needed in everyday living

If I had my choice I would not learn
any more mathematics

Men make better scientists and engineers
than women

In mathematics, problems can be solved
without using rules
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2.10

2.11

2.19

2.19

2.22



- 39 -

memorizing and hold that learning mathematics should extend that,

probably in a direction of more creative thinking.

Disagreement with the statement expressing unnecessity of rule

application in problem solving is consistent with the (at least

abstract) Importance students assign to memorizing (and thereby

to using) rules.

Differences between types of institution along opinion scales

Recalling that mathematical achievement on standardized tests

differentiated grammar school and SVSS pupils, and confirmed

extreme ability gaps, these two large subpopulations were

compared along affective components as well. As predicted, ,there

were significant differences between the two subsamples along

almost every dimension. Out of 46 primary variables of the

"general" domain of attitude toward mathematics, for instance;

only 10 opinions did not distinguish significantly between the

two sets of cases when examined by a two-tailed t test. Among

these, 27 variables showed.a difference significant at p <0.001

level. Vocational school pupils invariably have poorer (less

acceptable) views on mathematics. They agreed less, or'disagreed

more, than grammar school students with statements like 'There

are many different ways to solve most mathematics problems',

'Mathematics helps one to think logically', 'Mathematics is

useful in solving everyday problems', and especially with

statements of the mathematical self-concept. 'I really want to

do well in mathematics', 'I feel good when I solve a mathematics

problem by myself', 'I usually understand what we are talking

about in mathematics', 'I like to help others with mathematics

problems', 'I feel challenged when I am given a difficult

mathematics problem', 'working with numbers makes me happy',

'I usually feel calm when doing mathematics problems', and several

others are statements to which whatever the mean value of

agreement is SVSS students can consent significantly less

(p<0.001) than grammar school students.

The relation of attitudes toward mathematics to mathematical

skills
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Another way of characterizing processes in Hungarian mathematics

education is to analyse the extent to which the attitudinal

components just discussed may contribute to levels of mathe-

matical 'skills' and 'abilities'. In this paper, only some

elementary data concerning this relation will be presented.

Mathematical skills and abilities will be operationalized, like

before, by the overall score TTGTD of two rotated standardized

IEA mathematics tests.

The relations of attitude components, pertinent to activity forms,

to skill levels are demonstrated in Table 8. It is no surprise

that closer correlations are all negative as attitude scales are

conceptually inverted (small values represent important, easy

and preferred activity items). At the very high number of cases

in the study all Pearson correlation coefficients over10.11Aare

significant at the p<0.001 level. The selective table lists

only those under -0.25. Even then, correlation coefficients

allow to state that only a relatively small proportion of

ability (skill) variance can be explained by the attitude items.

Nevertheless associations make educational sense. Solving word

problems and proving theorems are two of the ubiquitous activities

of school mathematics. Students who prefer these forms of

activity (low attitude value) tend to have higher ability, and

the reverse, students with better abilities can find it natural

to prefer these mathematical tasks. The latter applies to the

Difficulty correlation as well (higher ability students find

word problems easier).

The more general domain of attitudes (Table 9) produced higher

ability correlations. Persons with favourable mathematical self-

-concept and aspirations tend to have higher levels of ability

(skill) and vice versa. Five of the highest correlated affective

dimensions are selfrelated. There is also a tendency for

students who hold that 'there. is always a rule to follow' and

there is 'little place for originality' in mathematics to perform

well on tests. Although internationally standardized tests

offered wide opportunities for advanced students to solve

problems creatively, this may not have been reflected to a

required extent in multiple-choice response coding. The latter
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TABLE 8

Interrelations of single attitudinal statements to
overall performance on mathematical tests

Hungarian secondary school students, N rJ 2450

Part 1,

Attitudinal statements about forms of mathematical
activity

15 activity forms, 45 item statements

FORMS OF MATHEMATICAL ACTIVITY Scale Pearson's

r

(Correlation
coefficient)

Highest positive correlations (r>0.25)

NONE

Highest negative correlations (r4m0.25)

Solving word problems Preference - 0.31

Solving word problems Difficulty 0.31

Proving theorems Preference - 0.28

Differentiating functions Importance - 0.26

BEST COPY AVAILABLE
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TABLE 9

Interrelations of single attitudinal statements to
overall performance on mathematical tests

Hungarian secondary school students, N ra2450

Part 2,
Attitudinal statements about mathematics
(as a subject and as a science)

46 attitudinal statements

STATEMENTS
Pearson's r
(Correlation
coefficient)

Highest positive correlations (r>0.25)

I would like to work at a job that lets
me use mathematics 0.40

I usually understand what we are talking
about in mathematics 0.36

I feel challenged when I am given a difficult
mathematics problem 0.36

I usually feel calm when doing mathematics
problems 0.31

I think mathematics is fun

There is always a rule to follow in solving
a mathematics problem

There is little place for originality in
solving mathematics

0.30

0.28

0.26

Highest negative correlations (r4-0.25)

I am not so good at mathematics - 0,35

I could never be a good mathematician - 0.31

Mathematics is harder for me than for
most persons - 0.30

If I had my choice I would not learn any more
mathematics

Mathematics is a set of rules-

Now matter how hard I try I still do not
do well in mathemqtics
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two results are in good agreement with several observations

concerning Hungarian mathematics teaching, pointing at the

possibility that instruction does not really require the average

student to be original and creative, and -- with exceptions --

encourages rule-following and conventionalism.

The negatively correlated statements are again mostly self-

-concept descriptors (statements 1st to 4th and 6th--7th in

order of mention). It is puzzling at first sight that persons

negating 'mathematics is a set of rules' likewise tend to reach

higher ability levels. The possible explanation is twofold.

First, one may be aware that mathematics involves much more than

rule application without denying the importance of rule

application in everyday'school mathematics. Second, it is not

inconceivable that the cited correlations stem from two

partially different sets of cases. One may contain conventionalists

who fare quite well in a traditional school context of mathematical

problem solving, while the other, students who reach favourable

levels of skill just because relying on problem-specific novel

solutions, originality, or heuristics.

The first International Mathematics Study (HUStN, 1967) found

little variance (among countries measured) in strength of

corelations between affective variables and mathematical

'achievement'. Pearson r's varied from 0.26 (Belgium/Flemish) to

0.42 (Japan) with a mean of 0.32, with data based on nationally

representative samples in all participating countries. Another

representative study in the United Sta.tes with large samples

(CROSSWHITE, 1972) demonstrated a similarly strong correlation

(0.28) which did not change much between age cohorts of 6th/8th

grades and 9th/12th grades. These results and analyses on smaller

Hungarian samples (KLEIN, 1971, 1973, 1975, 1977, 1980, 1987)

confirmed that affective input characteristics significantly

contribute to levels of mathematical achievement. What is more

interesting at present is the finer structure of these affective

variables (opinions) and their relation to more narrowly

specified mathematical activities in school. Nevertheless,

correlations reported in Tables 8 and 9 are of the same magnitude

as ones betweeh overall attitude score and achievement in

international studies. r% 59
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Attitudes, of teachers toward mathematics

While students' attitudes toward, and opinions on, mathematics

influence mathematical thinking and abilities, teachers'

attitudes toward the same may play a decisive role in determining

teacher behaviour and efficiency. The Second International

Mathematics Study provides unique possibilities to compare

teacher attitudes with student attitudes. The two domains of

effectively coloured opinions listed above were re-measured with

teachers of mathematics, albeit in a somewhat reduced fashion.

The number of activity forms specified as attitude targets was

smaller (and not fully overlapping) with student attitude

measurement. The number of statements in the "general" part was

also cut to fifteen.

The importance ratings of four common activity forms of school

mathematics are shown in Table 10. The limit of interpretation

being the same as for data in Table 4, all four specified

activities seem to be judged 'very important' by teachers.

Checking answers, solving word problems and memorizing rules are

items we located among important forms of activity in students'

perceptions as well. These four areas of mathematical practice

reveal a congruence between student and_teacher opinions.

Table 11 includes selected data for Difficulty ratings. Of four

activity forms, only one exceeded the limit: 'Word problems',

which are evaluated 'very difficult' by teachers: This opinion is

again identical with that of the majority of students (Table 5).

Teachers express rather pronounced preference for three of the

four activity areas (Table 12).

Although the self-related scales were not tested with teachers,

results from the domain of affective dimensions at the "more ge-

neral level" (Mathematics as a subject and as a science) have

again some coinciding judgements between teachers and students.

Using the same limit of interpretation as in Table 7, dimensions

creating strongest agreement and disagreement among teachers are
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TABLE 10

Attitudinal statements: Ratings of importance
Hungarian secondary school teachers, N ni 94

1, most important,...5,1east important
4 activity forms rated, 12 items

FORMS OF MATHEMATICAL ACTIVITY

Rated most important (X.<2:5)

Checking an answer to a problem

Solving word problems

Memorizing rules and formulae

Estimating a result of a problem

x

1-44

1.47

1.71

1.82

TABLE 11

Attitudinal statements:, Ratings of difficulty
Hungarian secondary school teachers, Nov94

1, easiest,.... 5, most difficult
4 activity forms rated, 12 items

FORMS OF MATHEMATICAL ACTIVITY

Rated easiest (x < 2.5)
NONE

Rated most difficult (x). 3.5)

Solving word problems

x

3.81

TABLE 12

Attitudinal statements: Ratings of preference
Hungarian secondary school teachers, N 1"094

1, most 5, least liked
4 activity forms rated, 12 items

FORMS OF MATHEMATICAL ACTIVITY

Rated most liked (x < 2.5)

Solving word problems

Estimating a result of a problem

Checking an answer to a problem

Rated least liked 3.5)

NONE
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listed in Table 13. Teachers widely hold that mathematics helps

to 'think logically' and (with a similar semantic in the mind

of most mathematics teachers) to'think according to strict rules'.

Creative aspects of mathematics are accepted (at least at a

theoretical level) by many teachers. They hold that mathematics'

is a scene for creative persons and that there are many ways to

solve problems. Assistance in acquiring logical thinking and

alternative solutions to problems are opinions with which students

and teachers strongly agree.

Teacners disagree with the assertion that 'mathematics is no more

than a set of rules' and that it 'requires memorizing' mostly.

Not surprisingly, they also judged the statement of 'little place

for originality' in solving mathematical problems as not

acceptable. These views harmonize with what was demonstrated

(Table 7) among students concerning statement 'Mathematics

involves mostly memorizing'. The ambiguity raised by students'

accepting that problems 'cannot be solved' without using rules

is, however, absent from teacher judgements. Mathematics

teachers, unlike students, strongly deny that there have been no

discoveries in modern mathematics.

CONCLUDING REMARKS

As achievement data prove there is no real ground to formulate

general statements about secondary mathematics education in

Hungary. There are strata of secondary schooling with excellent

mathematics teaching and creativity-enhancing, innovative methods.

On the other hand, more than half of the student population

(almost all pupils in SVSS) suffer from grave problems in both

achievement in, and attitudes toward, mathematics.

As a result of education, a majority of persons leaving secondary

institutions hold that. mathematics is important; that it is

indispensable in an age of rapid technological progress. Another

general belief is that a man-in-the-street is becoming less and
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TABLE 13

Attitudinal statements about mathematics
'(as a subject and as a science)

Hungarian secondary school teachers, N 94

1, strongly disagreed with
5, strongly agreed with

STATEMENTS -
Agreement strongest (R> 3,75)

x

Mathematics helps one to think logically 4.68

Mathematics is a good field for creative
people 4.26

Estimating is an important mathematics
skill 4.04

Mathematics helps one to think according
to strict rules 3.98

There are many different ways to solve
'most mathematics problems 3.80

Disagreement strongest (x < 2,25)

Mathematics is a set of rules

Learning mathematics involves mostly memorizing

There have not been any new discoveries in
mathematics for a longtime

There is'little place for'originality
in solving mathematics problemd
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less competent in the field. Students do not blame specific

methods and processes of mathematics encountered in school for

their felt incompetence. They do not even question the declared

necessity of learning mathematics in higher grades of secondary

schooling in case of persons who do not want to be employed in

jobs with mathematical requirements. This abstract assignment

of importance is compatible with the miew that it is another

person, not the self, for whom mathematics is useful. It is

also compatible with a dispreference -- especially in pupils of

no personal interest in mathematics -- toward related activities

in school. Persons not interested in mathematics typically

profit very little from taking secondary mathematics. The time

is certainly drawing near when larger strata of pupils will

express doubts about compulsory mathematics imposed upon them.

As it is today, importance attributed to mathematics inside

and outside the school system is overestimated. Educators and

the society at large still presuppose that personal mathematical

achievement at secondary level testifies highly developed

thinking skill or even creativity. That is not borne out by

nationally representative studies.-A decline in perceived

importance will surely follow if we make no steps to modernize

content and process of secondary mathematical education.

The key of transformation is, obviously, the teacher. Hungarian

secondary mathematics teachers being overstressed, mostly

inadequately trained and underpaid, there are obstacles in the

way of modernization. The professional setting and job context

of teachers should be modified appreciably if we want teachers

to volunteer self-training, improve their classroom methods,

and implant a liking of mathematics into their students.
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NOTES
1/ _Professor of Psychology

Presently at: Department of Psychology, "Gyula Juhasz"
Teacher Training College, Szeged, Hungary.

2/ Department of School Research, The National Institute
of Education, Budapest, Hungary.

3/ The acronym 'O.P.I.' stands for 'Orszagos Pedagogiai Intezet',
Hungarian name of the National Institute of Education
where Professor Varga worked out his method.

4/ The authors are greatly indebted to the International
Association for the Evaluation of Educational Achievement
for the opportunity of using measuring instruments and
connected research materials. We are especially grateful
for the help of Professors T.N. Postlethwaite, R.W. Phillips
R.A. Garden, and of Mrs. Julianna Radnai-Szendrei (N.R.C.).

The second author acted as co-ordinator of the Population
B (cross-sectional) measurement in Hungary for the SIMS.
The results used as illustrations in this paper are taken
from simplest descriptive and correlational studies
performed on the RMPP data system. For a fuller report of
results from this system see HABERMANN (1983, 1985, 1986,
1987; RADNAI-SZENDREI and HABERMANN, 1984).

5/ It should be underlined that although numerical results
here are fairly objective the interpretations are those of
the authors only. Several alternative interpretations were
voiced in other Hungarian publications on the subject.

6/ The issue of semantics of generic terms in psychology
cannot be discussed in this practical paper. As:pointed
out elsewhere there is more agreement in interpreting
differential targets of affective constructs than inherent
conceptual characteristics of these constructs. For instance,
it is easier to distinguish preferences toward mathematics
from preferences toward physics than preferences toward
mathematics from interests in mathematics.

7/ In his later work, J.B. Carroll accepted the view that
perseverance as a single construct is not sufficient
to describe the full range of school subject specific
affective / motivational components (cf. CARROLL, 1984/1985
pdn., p.93)

8/ These variables were measured by such instruments as
Dutton's 'Attitude toward Mathematics Scale' (RYAN, 1969),
'Elementary Attitude Scale toward Mathematics' (ANTTONEN,
1969), 'Secondary Mathematics Attitude Scale' (ANTTONEN,
1969) and the 'Pro-Math Composite' instrument (CROSSWHITE,
1972) .

9/ As done for teachers, it may be useful to demonstrate by a
set of distribution characteristics the span of the student
sample. The age of pupils varied from 17:3 to 20:7, with
the average 18:1. 62 % were girls and 38 % boys. Among
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fathers, less than 1 % were unemployed. 14 % were unskilled
workers, 45 % skilled workers, small craftsmen, low-level
white collar and clerical employees, 15 % foremen and low-
-level managers, 9 % middle-level managers and directors,
11 % higher level managers and directors. The monthly full
income of families (reported) at the time of measurement
was HUF 3000,--or lower in 4 %, 3001--4000,-- in 7 %,
4001--5000 in 11 %, 5001--6000 in 19 %, more than 6000,-
in 58 % of the sample. 23 % of the fathers had secondary
and 23 % of them, university or higher college certificates.
The same proportions for mothers were 28 % and 11 %. 7 % of
fathers and 9 % of mothers did not even complete 8-grade
compulsory Hungarian elementary school.

10/ This description is only meant to distinguish a second set
of affective rating items from the 'activity specific'
first set.
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BEYOND CONSTRUCTIVISM

(Learning Mathematics at School)

Pearla Nesher

The University of Haifa

Last year we heard plenary presentations that made all of us think

more seriously about how we view math education in a wider context of

epistemological and learning-theories. The main focus, last year was

on constructivism. I thought that research on the psychological

aspects of math education studied in the last decade had their own

contribution going beyond constructivism.'This willbe my main topic

today, I would like to.elaborate on three main issues. I will start

with tne role and characteristics of learning at school; I will then

sketch some outlines of the epistemology for the:mathematics learned

at school and, finally, with an illustration taken from a specific

piece of research I will speak on'the role that:misconceptions and

planned environments can play in schools.

The role of schooling

My first assumption is that schools exist 'mainly and primarily to

primote knowledge. Most of us accept the constructivist approach to

the acquisition of knowledge, and I will quote Sinclair from last

year, who said that the essential way.of knowing the real world is

not directly' hrough our senses, -but first and foremost through our

actions. ...new'knowledge is constructed from the changes or

transformations the subject introduces in the knower-known

relationship.. (and) the quality of the knowledge gathered in this
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way is partly determined by the ways in which reality reacts to our

interventions and by its correspondence to the knowledge other people

have constructed" (Sinclair, 1987).

I would like to regard school as a significant component ih the

child's reality and would like to analyze some of school

characteristics as an environment within which the child can exercise

his theories in action. School itself can be looked at from various

aspects: each one of them might contribute different sets of

experiences. I will concentrate on school as an environment for

learning mathematics, and will take into account the specifics of

mathematics as well as the modes of learning and construction of

knowledge.

In speaking of learning at school, I do not intend to underestimate

the extent of learning which takes place 'outside school, rather to

emphasize the role of schools in designing a learning environment. We

all know that a lot of learning is going on outside schools. We are

told that much of the mathematics that children and adults know and

use is learned on the streets and in factories, and it is based not on

one's early schooling but on one's experiences, actions and

reflections at various sites (Reed & Lave, 1981). This is the story

about the vendlers in Brazil that Carraher and Schliemann describe

(Carraher, carraher and Schliemann, 1987); the fishermen in north

Brazil (Schliemann, 1988); or the dairy workers-that Scribner

(Scribner, 1984) tells about them, Certainly, we admit the role of

learning via free play outside school.
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If this is the case, it might be helpful to understand the difference

between learning in school and that outside school. Since Lauren

Resnick (1987) recently made such an analysis I will use this as my

point of departure. Resnick has "identified four general classes of

discontinuity between learning in school and the nature of cognitive

activity outside school. Briefly, (she said) schooling focuses on the

individual's performance, whereas out-of-school mental work is often

socially shared. School aims to foster unaided thought, whereas mental

work outside school usually involves cognitive tools. School

cultivates symbolic thinking, whereas mental activity outside school

engages directly with objects and situations. Finally, schooling aims

to teach general skills and knowledge, whereas situation-specific

competence dominates outside" (Resnick, 1987, p.16).

I am not sure these characteristics tell us the entire story. I think

that there is another aspect that she neglected to mention; this has

to do with the fact that school is an environment purposely and

intentionally created to promote knowledge (and in promoting knowledge

I include norms and social knowledge as well). Instruction at school

is a goal-directed, intentional, and conscious activity on the part of

schools, and therefore amenable to rational analysis and critical

consideration.

Learning in and out-of school has a completely different setup.

Learning out of school is part of the immediate-social and economic

system. The goal on the part of the trainer is to put the trainee as

soon as possible on the production line as far as a skill is

concerned, or, to improve other skills, as far as social communication
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is involved. This is not exactly the case at school. Schools aim to

pass on knowledge to students to partly be employed at school in

further learning, but mainly to be employed elsewhere, after leaving

school. This creates quite an awkward situation in comparison to the

rest of the world. Schools do not gain directly from the students'

knowledge but rather from the growth in their teachers' knowledge of

how to teach. Pedagogy, and means of supporting learning, are the

expertise of schools. This is not the situation outside school. The

carpenter or the computer-scientist are the experts for carpenting or

computing, respectively. They are not the experts of how this kind of

knowledge is best learned

Such an observation raises several fundamental questions which are .

related to the fact that schools have to deal with questions of

motivation or. with questions of rewarding procedures, etc. Thesewill

not concern me here. They are all relevant to learning. Yet,

admitting the limitation in scope, I will concentrate here on the

cognitive activity, on the learning of conceptual systems which are at

the heart of schooling. In what follows, instead of speaking in

general terms rwill refer directly to the learning of mathematics.

The compariSon between learning mathematics in and outside school

raises the questions: What kind of mathematics do we teach in school?

For what purpose? And, how do we teach itin the light of the

constructivist maxim?

Obviously we do not teach addition in.the context of a supermarket

with the goal of saving some money. At most, we mimic_such a situation

by what is called "word problems". This has no jetention of being any
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reality in the learner's eyes. We do not teach graphs and-diagrams in

the context of advertizing and check what is the best way to convey

information and what is the preference of each type of diagram from

the advertizing point of view. We do not teach ratio in the bakery,

though many activities there call for the use of ratio and proportion.

And finally when or where should we teach Eklidian geometry, vector

space or, exponential equations?

The utilitarian approach with its immediate payoff which is typical of

learning out of school becomes very weak even as a point of departure

when it comes to school. Of course, there is also a payoff in

learning mathematics at school. Starting with the jobs available for

one on his completing school, but also as a means of survival in

schools while attending it (in the western society), or in the process

of learning itself. I think, nevertheless, that mathematics learned at

school has a completely different agenda than the utilitarian one. I

suggest that learning mathematics at school is aimed at learning a

specific conceptual framework as a cultural endowment that shares some

of the characteristics that Resnick mentioned, such as being abstract,

general, symbolic, and detached from a specific context.

In order to make my argument, I would now like to raise some

epistemological considerations related to the learning of mathematics.

The discussion that follows should not be regarded as a philosophical

attempt to resolve the controversy between the different schools

within the philosophy of mathematics (Kitcher, 1983; Benacerraf and

Putnam (Eds.) 1985)), rather some of the assumptions mentioned here

will be used to clarify the educational issues. Different approaches
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to the teaching of arithmetic correspond to different conceptions

about the reference and the sense of the mathematical language.

The theoretical approach upon which I will elaborate here addresses

two main pedagogical needs (a) the need for any learner to construct

his knowledge through interaction with the environment (the

constructivist maxim), and (b) the need to arrive at mathematical

truths (the realist maxim). I know that the second need is not

acceptable to some constructivists, but I contend that my assumptions

reside withih the non-radical constructivism. To avoid ideological

dispute I am ready to name my approach "a pedagogical realism". The

epistemology that I call "pedagogical realism" has grown out of

considering three issues: (1) the ontological status of mathematical

entities; (2) where can the learner look for the truths of his

mathematical findings and beliefs; and (3) what are the pedagogical

implications from the above for learning mathematics at schools.

The Ontological Question

I begin with analysis of natural numbers, since those seem to be the

most'confusing in regard to the ontological question. Clarifying their

nature will make it easier to understand other kinds of numbers (such

as rational, decimal, irrational) or other mathematical entities. In

discussing the question, "What are numbers?" I first make the

distinction between the linguistic signs and what they stand for

(symbolize or signify). Furthermore, I make the distinction between

number words which are part of ordinary language, and numerals which

are part of the symbolic language of mathematics. People usually think

that both refer to the same entity. But number words in ordinary
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language are used to qualify quantitatively other, objects which are

specified by their class term, such as "children" in the case of "five

children". Numerals in mathematics refer to mathematical entities,

abstract concepts or objects. The numeral "5" for example is a name

for a specific and unique number that has all kinds of properties now

to be learned at school, such as being an odd number, or that it is

one of the square roots of 25, etc.,. all of which are concepts within

the mathematical system. Though we frequently think of the number 5 as

of having an image of multitude of elements, in the language of

mathematics one speaks of the number 5 in the singular, e.g. "5 is an

odd number", a. point that emphasizes our conception of it as a unique

and singular mathematical object that has an ontological status in the

language of mathematics that differs from the status of "five" as a

quantifier of other objects in ordinary language.

Obviously, the young child starts to conceive numbers in their

relation to other objects as they are used .in ordinary language, but

later on at school we aim to teach him that numbers within the

mathematical system refer to abstract mathematical entities. In his

spontanedus environment the child'will hear expressions such as: "John

ate.five cookies ", or "John is five years old", in school he will soon

deal with expressions of the form "5+3=8" or "5 is a prime number ".

The distinction I have just drawn is even sharper in moving toward

mathematical entities, that do not have seemingly parallel expression

in everyday experience and in ordinary language such as the number "e"

or "pi" or concepts such as polynoms, or vectors. What creatures are

they?
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Mathematics is a conceptual system with its own unique language. Its

language enables us to look for its sense and reference which are
.

characteristics of any language. For example, the following

expressions: "2+2"; "2x2"i "2 to the power of 2" all have the same

reference which is the abstract number 4. Yet each expresses a

different thought and a different sense. The different senses of the

symbolic language of mathematics comprise its essence and the gist of

understanding mathematics. Most senses expressed in mathematics are

new relations that could not be expressed in ordinary language and now

are embedded in the new symbolic language to express notions which are

impossible to express otherwise. The most trivial example is the

attempt to express in ordinary language the algebraic expression:

"three times of a number increased by 7". This expression is ambiguous

as it stands, and only the symbolic language of mathematics can remove

the ambiguity by expressing this either as 3x+7 or as: 3(x+7).

The Truth of Mathematical Sentences

I have raised the ontological question since it is intimately

connected to the question of truth in mathematics. It is expected that

children will learn the rules of formation of mathematical sentences

at school, that they will understand the different senses of each

sentence and that they will know how to distinguish between true and

false statements in this language. Moreover, much of our teaching in

mathematics pertain to the discovery of new expressions that maintain

the truth value of the sentence. It should be noted (as Russell wrote

in 1959Y1912 p.70) that having.a truth value is a property of beliefs,

yet it is established by many different methods, which are independent

of the beliefs (As the long history of false beliefs has
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demonstrated). Also, falsehood is.adiunct to the notion of. truth. In

Russell's words: "Our theory of truth must be such to admit of its

opposite, falsehood" (Ibid). We might call it "false belief", ."error",.

"misconception ", "bug" and in some cases even "theory in action", all

express a system of beliefs that h'as a truth-Valtie with its two

complementary 'values: true.and false.

One method of arriving at truths in mathematics is what Russell called

the coherence theory of truth. Actually, all proofs in mathematics are

made in a deductive manner to preserve the coherence of the system.

The trouble is that young children.(and many adults!) that study

mathematics, cannot prove for themselves the truths of mathematics, by

means of the deductive method.

A real and significant educational question is, if the deductive

method is ruled out for young children, how can a child. know that he

has arrived at a true sentence. Or how can'he know which numeral, for

example, to put in the blank space of the expression 2+ =5 and get

true sentence?. The answer that we seek has nothing to do with the

syntactic rules.but rather with knowledge about abstract numbers and

their characteristics. To write 2+3=6, is syntactically as good as

writing 2+3=5. Yet we and soon every child will know that the first

statement is false and that the second is true. How should they know

it? The paper on which the child writes a statement such as: 3+2=10 is

long-suffering and there is nothing in this pen and paper activity to

tell the child whether he is right or wrong.
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The Pedagogical Outlet

If the deductive method is ruled out for the young child for arriving

at true Sentences, we are left with two other options: One is to learn

and memorize the'true facts that expert mathematicians know how to

prove, and later on to refer to the memory as the judge of the.truth

value. of a given sentence (or rely on,teachers' approval or

disapproval). A second alternative is to provide the child with some

tools. for verification via experimentation in a world assumed -to be

analogous to the mathematical abstract-world; in which he already

knows what is true and what is false there. Logo (Papert, 1980) could

be such an example. While the child operates the turtle by means of

formal language, he gets his feedback about the-truth value of his

formal descriptions by comparing the move of the turtle to .the goal he

had in mind and_he knows (eventhough he will not always admit it),

whether he succeeded in his formal description or not.

Each of the above approaches -has a catch in it. The first approach
.

(approaching the teacher for an approval) relies heavily on

authoritarian methods of imposing knowledge and discourages self-

exploration and self-conviction. In fact, many teachers have taken on

themselves this role of judging whether the child is correct or not in

his performance. This.does not let the child construct for himself the

mathematical notions. and concepts. Nor does it enable him to realize

that the truths of mathematics are objective and necessary.

The second approach of experimentation as the mode for verification

introduces mathematics as an empirical science rather than a deductive

one. In adopting the second approach we adopt also another theory of

truth, the correspondence theory of truth (Tarski, 1949, Russell,
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1959/1912) by which truth consists in some form of correspondence

between a belief and a fact. If to use Tarski's notorious example:

"The sentence "snow is white" is true if, and only if, snow is white".

Using a similar approach to learn the truths of mathematical sentences

means constructing a world in which the child will be able to examine

for himself the truth of mathematical sentences via the state of

events in a familiar world. It seems that the accumulated wisdom of

math educators agree that learning mathematics at school can benefit

from designing such environments in which children can experiment; get

feedback on their activities; be able to explore their hypotheses and

discover whether they are true or false. Note, again, how crucial is

the notion of truth and falsehood to the examination of one's

hypotheses.

At this point some of you might think that I am speaking about

microworlds, and indeed I am. But I would like to spell out what makes

a microworld such a powerful educational tool. Elsewhere I have talked

about the characteristics of a learning environment at school (Nesher,

1988) and have detailed what I call Learning Systems (or microworlds

if you wish). Here I will point only to some of its necessary

components.

The most important characteristic of a Learning System is that it

consists of two major components:

1) There is a clear articulation of a unit of knowledge to be taught,

based on an expert knowledge. The experts in this case are not the

scientists in the field, but rather the experts who can tailor the
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body of knowledge to the learner's particular constraints (such as age

or ability).

2) There is an exemplification component that must be familiar to the

learner. The child should be able to grasp intuitively truths within

the selected exemplification model. The choice should also ensure that

the relations and operations. among the objects in the exemplification

component will fully correspond in an isomorphic manner to the objects

relations and operations to be learned. I should stress that the

exemplificatiOn component must be familiar to the child to serve as an

anchor to develop an understanding of a new and unknown system of

relations. For example, one can use the ability of the child to

differentiate among colors and lengths as is done in the use of

Cuisenaire rods, to teach him new concepts related to the natural

numbers, or one can use the child's knowledge of spatial relations to

learn programming in Logo.

What is possible and what is not possible within such an environment?

It seems that it is possible to establish a language that employs

ordinary language notions between the teacher and the child about the

objects and relations in the exemplification model. It is possible to

demonstrate new configurations not yet experienced by the-child, .in a

domain which is already familiar to him. It is possible to try and

have a language that symbolizes these new configurations,but it is

not possible to assume (and this is a warning) that, just by pointing

out to him, the child has instantly noticed the new relations, has

reflected on them, and has absorbed their significance. Nor should one

assume that the language the teacher uses to signify these new
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relations,is not an empty verbalization for the child. Here, I call

again upon the constructivist maxim.

What is really possible is to construct within the childls reach an

environment that if experienced and explored by the child has the.

potential of revealing some interesting relations that were (or were

not) noticed before by mathematicians and were coined in a

mathematical language. In offering such learning systems there is a

notion of planning and goal-directed activity at school which is the

essence of instruction, as part of-our vision of mathematics as a

cultural endowment, on one hand, and an agreement that the learner

must construct for himself any piece of knowledge, on the other.

Granted that mathematical knowledge grows out of the subject's

reflection on his own actions, the best wecan do is to build a

constrained environment within which the child,can at freely in a

.less scattered and random fashion than might, happen outside school. My

claim is that most of the more advanced mathematical notions are not

easily amenable to the student's activity or experimentation outside

of schools and as such they call for some pedagogical intervention.

In advocating the planning and creation of learning systems by the

schools, a word of caution is in order. There is a danger that there

will be a gap between teachers' planning and the child's necessity to

construct for himself his knowledge at his own rate.

This is a true pedagogical dilemma
with which teachers have to live

every day. When a teacher has-his own expertise and norms, then the

students' theories in actions are doomed to be judged relative to the
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norm as misconceptions. I would like therefore to raise a question, on

which it is not always clear what the radical constructivists stand

is: Does such a knowledge on the part of the teacher enhance or

inhibit' learning? I would like to answer this question after

presenting the following research findings.

Learning Decimals

In the past few years some of my students have been engaged in

research aboUtjhe learning of decimal numbers. I will use these

studies to illustrate the problems of learning at school. The first

study by Mrs Bilha Zuker, my former M.A. student, dealt with the

question of understanding. vs. algorithmic performance in the domain of

decimal fractions. She constructed two separate tests, one that tested

what we believed to be routine, algorithms involving deCimals and the

other test that called for some reflection and understanding of

decimals. Comparing the value of two decimals was one of the items in

the second test.

The next step was taken by Dr. Irit Peled who wanted to look more

closely where the failure in understanding-occurred. She asked herself

if it would be possible to find its sources. Her study was parallel to

a study made by Leonard-and Grisvald (1981) and Resnick et al (1988).

To cut a long story short, I will describe the gist of the study.

Consider for example the following tasks administered to children of

grades 6,7,8, and 9. The subjects had to mark the larger number in the

following pairs:

Case I 0.4 vs. 0.234

Case II o.4 vs. ' 0.675

83



68

In Case I Jeremy marked that 0.234 is larger than 0.4; and in Case II

he marked that 0.675 is the larger one. Does he or does he not know

the order 'of decimal numbers? In our study in Israel the data was

gathered in individual interviews, so that the children could explain

their choices. This helped us understand their theories in action. In

both cases Jeremy said that the longer number, i.e. with the more

number of digits (after the decimal point) is the larger number (in

value). Jeremy had one guiding principle as to the order of decimals

and, accordingly, Jeremy was wrong in case I while in Case II he was

right. Although his guiding principle was a mistaken one, he succeeded

.in correctly solving all the exercises similar to Case II. Also, It is

not hard to see that his guiding principle was one that served him

well up to this point, having been extrapolated from his knowledge of

whole numbers where the longer numbers really are larger in value.

.And, unless something is done, Jeremy's "success" or "failure" in

certain tasks is going to depend on the actual pair of numbers given

to him. This, of course, blurs the picture of his-knowledge Now

imagine Ruth who decided in both Cases I and II (in the above example)

that 0.4 is the larger number, i.e., in each case she pointed to the

shorter number as the larger one in value. Ruth gave the following

explanation: "Tenths are bigger than thousandths, therefore, the

shorter number that has only tenths is the larger one." Ruth does not

differentiate between Case I and Case II either. She will be correct

in all the cases similar to Case I, but wrong in all cases similar to

Case II. We can understand this kind of reasoning in light of what is

learned in fractions. Ruth has a partial knowledge of ordinary

fractions and cannot integrate what she knows about them with the new
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chapter on decimals fractions and their notation. It is interesting to

note that about 35% of the sixth graders in Israel who completed the

chapter on decimals acted like Jeremy. They were, in fact, using the

above-mentioned rule which relies heavily on the knowledge of whole

numbers; and about 34% of the Israeli sample of sixth graders made

Ruth's type of rule. Even more interesting, is the fact that while

Jeremy's rule frequency declines in higher grades, Ruth's rule is more

persistent and about 20% of the seventh and eighth graders still

maintain the rule laid out by Ruth (Nesher and Peled, 1984)

How could such rules persist for such a long time? One reason is that

in most cases this topic is learned only in a formal mode as a pen and

pencil exercise. The child cannot find for himself the truth of his

sentences and must rely on what I called the first option, i.e. that

the teacher tells him whether he is right or wrong. Soon I will show

that the teacher, too, in this case could not be of great help.

In many cases, as we saw, the mistaken rule is disguised by a

"correct" answer. That is, the student may get the "right" answer for

the. wrong reasons. Thus, for the student who holds a certain rule, not

all the exercises consisting of pairs of decimal numbers will elicit

an incorrect answer. For example, decimals with the same number of

digits are compared as if they were whole numbers and, therefore,

these items are usually answered correctly even by those who hold

inadequate rules, and cannot therefore be used for diagnosing or

raising conflicts with mistaken rules. This was the case with the

previous example. If the student for example, given the following item

"Which is the-larger-ofthe two decimals 0.4 and 0.234?" answers 0.234
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we may suspect that he holds Jermey's rule. But, if he answers 0.4, we

cannot know whether he-knows how to order decimals, or if he is

holding Ruth's error, but happened to get lucky numbers and be correct

on this particular item. Thus this item can discriminate and elicit

those holding Jeremy's rule but cannot discriminate between those

holding Ruth's rule and those who really know the domain. Along these

lines, for the-same task, the pair of numbers 0.4 and 0.675 can

discriminate those holding Ruth's rule but cannot discriminate between

those holding Jeremy's rule and experts.

I have mentioned before that the teachers could bebut of little help

to their students even if they were ready to take an authoritarian

stand. The reason is that these misconceptions are hard to detect. in

her work Irit Peled has built a simulation that produces pairs of

decimals to be compared. In Peled's simulations it was found that when

pairs of numbers are randomly selected from all the possible pairs of

numbers having at most three digits after the decimal point, the

probability of'getting an item that will discriminate Jeremy's rule

was 0.10, and Ruth's rule 0.02. Thus both Jermey and Ruth will succeed

up to 90% on any activity given to them if a special consideration is

not taken into account. It is not surprising, then, that teachers are

usually satisfied with the performance of children holding Jeremy's or

Ruth's rules. And for this they should not be blamed. On the basis of

one wrong item it is impossible to discover the nature of the

student's theories in action. In such classroom it will also be very

difficult for Jeremy and Ruth to give. up their rules since they are

daily rewarded for their erroneous rules by correctly answering non-

discriminating items.
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If we think that students experience at school should aid in

constructing more elaborated rules than the ones currently held, than

their experience should be directed towards only discriminating items

that raise conflicts with their earlier notions. Moreover, they must

have the opportunity to realize that there is a conflict. This cannot

to be achieved by the teachers feedback, for whom the students rules

are sometimes masked. We must look for a learning environment and

!earning systems that can exemplify to the student what is right and

what is wrong from a mathematical expert point of view.

Why did I takeiup your time in describing this detailed example?

Because the prOdeedings of our meetings in the last decade are full of

papers dealing with similar examples which are, in my view, the seeds

for the theory needed for a more successful teaching of mathematics in

schools.

I, for example, have learned several lessons from the above example

which I will present in general terms:

(a) Misconceptions and erroneous rules are found not. only behind

erroneous performance, but also .lurking behindmany cases of correct

performance. They are often "masked" by correct performances.

(b) Misconceptions may persist if the children do not have the

opportunity to experiment directly with a reality that contradicts

their beliefs.

(c) Schools are for creating learning environments that have their .own

feedback mechardsms, and for constructing good diagnostic
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discriminating items for the child's activity. Teachers are not in

schools to offer feedback, or for testing and rewarding. Rather, on

the basis of their past experience they should be the experts on what

are the best activities that enhance children's learning'. Watching.

classes I am surprised (and you are, too, probably) how much the child

works on exercises that do not teach him anything.

Here I have touched upon the question that I have raised before, and

one that I think constructivism does not explicitly answer. Granted

that the child has to construct his own knowledge, what is the role of

schools? Can schools be more efficient than any other occasional

learning environment? I think, my answer is clear and I will summarize

it by the line of thought that I have developed here:

I think that schools have the potential of becoming a better

environments for learning mathematics than any other environment. It

depends on our understanding of the nature of constructing

mathematical knowledge. Understanding in this context means building a

detailed theory that will first be based on a sound epistemology, and

then will be sufficiently elaborated to become a theory that directs

the actual learning; creating learning systems will be part of it; it

will explain "the theories in action" that children develop as well as

discern discriminating items and tasks that many of, us work on.

Final note

None of the hopes for good schooling that I have entertained must be

realized. None of the dreams about planned environments must be

fulfilled. Currently, many schools actually demonstrated that I am
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wrong. Yet I believe it is time to sketch the potentials for better

schooling and how we can reach them. I suggest that human creativity,

and man-made learning environments should be developed according to

our best pedagogical knowledge. I think that the so-called

"artificial" environments need not be inferior in promoting knowledge

than the natural ones, that we all know how powerful they are. Are

man-made_materials, such as the synthetic polymers, worst than the

materials that Mother Nature supplied us with in the first place? Can

any one imagine our world today without the advancement in all

technologies which are man-made? And why should this also not be true

of man-made learning environments that exemplify conceptual frameworks

which are, themselves, a human creation? I believe that it is possible

and it is in our hands to turn such dreams into reality.
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Reconstructive Learning

L.Streefland, Faculty of Mathematics and
Computer Science
State University of Utrecht, The Netherlands

Resume:
Dans cette contribtition,intitulee 'Un apprentissage reconstructif, on s'interroge sur les conditions

neessaires pour mettre les enfants dans une situation dans laquelle ils engendrent eux-mames- el,entuellement avec
l'aide de l'enseignant- des relations math6matiques abstraites.

En vue de r6pondre a ceue interrogation, on pone l'attention sur des constructions et des productions
fournies par des enfants dans le cadre d'un enseignement de mathematiques realistes.

Entrent alors successivement en' consideration les points suivants:
-Que peut bien signifier "les productions personnelles des enfants" et quelles sont leur fonctions dans le

processus d'apprentissage? Exemples.
-Qu' apporte une recherche en didactiquel regard dun enseignement des matheinatiques qui soil

reconstructible?Quel tale jouent les productions personnelles de ce point de vue?
-Interviennent enfin les caracteristiques d'un enseignement des mathematiques realistes.Ces caracteristiques

determinent les conditions optimales pour que les constructions et productions personnelles des eleves se d6veloppent
au mieux et prennent la place qu' dies meritent.

1.Introduction and survey

When thinking about the title of the present lecture, words like constructivism and
reconstructivism crossed my mind. I rejected them. I thought I would better avoid any allusion to
last year's PME-XI discussion on constructivism and its interpretations (cf. PME-XI
Proceedings),which I have neither the intention nor the talent to join.My aim is more concrete. The
question I wish to tackle is: How to influence children to produce by themselves-albeit under
guidance-their mathematical abstractions. (cp. Cobb, 1987) In order to answer it I will deal with
successively:

-children's own production in mathematical instruction -what does it mean?(2);
-function of their own production in the teaching/learning process, with examples (3);
- own productions in education developmental search after reconstructible instruction ( 4);
A brief reflection on reconstructive learning will conclude the exposition (5).

2.What is own production?
In productive mathematics education children, guided by their teachers, construct and

produce their own mathematics. The pupils' mathematical activity expresses itself in their
construction and in the production resulting from reflexion on the constructions. Treffers
(1987,p.260) has introduced this distinction, which according to himself is no matter of
principle. Free production is rather the most pregnant way in which constructions express
themselves.What, however,is own production? In order to answer this question we shall look out
for the preconditions and circumstances under which productions emerge or may emerge in
instruction.

By constructions we mean solving:
-relatively open problems which elicit- in Guilford's terms- divergent production, due to

the great variety of solutions they admit, often at various levels of mathematisation; and
-incomplete problems, which before being solved require self-supplying of data or

references.
An example of the first: How to divide two bars of chocolate among five children? An

example of the second: A radio message on a 5 km queue at Bottleneck Bridge- how many cars
may be involved?
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The construction space for own productions might even be wider:
-contriving own problems (easy, moderate, difficult) as a test paper or as a problem book

about a theme or for a course, authored to serve the next cohort of pupils. An example, say, for
grade one: Think out as many sums as you can with the result 5.

Finally there are border problems, that is, of constructive character but with a strong productive
component,which require devising symbols, linguistic tools, notations, schemes, or models. In our
illustrating problems stress is laid on the various functions :o be fulfilled by own productions in
the teaching/leaming process (as well as in research). In fact, a production problem can involve
more than one of these functions. The division according to functions is again a matter of stress
rather than of principle.

2,E1111C11911U2aW1112/3X111C11411illiklerldliUagrIMillg9.1Iraia

3.1.Preliminary survey
If children's learning is to be expressed in their own production, its various functions have

to be viewed under the aspect of instruction, that is, according to their didactical value (though of
course from the learner's side). Without aspiring at completeness, we will distinguish the following
functions:

-grasping the connection between phenomena in reality and the matching tool of
description and organisation (horizontal mathematising) (3.2.);

-seizing the opportunities of continued organising and structuring of mathematical material
(vertical mathematising) (3.3.);

-uncovering learning processes, and reversing wrong trends (3.4.);
-producing terminology, symbols, notations, schemes, and models serving both

horizontal and vertical mathematisation (3.5.);
Each of these functions will be illustrated by examples and commented on. In all cases it

will appear,that being productive in the mathematics lesson provokes both reflection and
anticipation on the teaching/learning process.

The various functions will finally be considered within the broader context of course
construction and education developmental research (4).

The whole will be concluded by a brief reflexion (5).

3.2 Grasping problems
Example :"The size of The Netherlands" ( after Treffers, 1987), from the domain of

calculation and meansuration by estimate: e,,
0
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Somebody affirms that the area of The Netherlands is 36,842 square meters, according to
Larousse Encyclopedia, he says. What is your comment?

We will give an impression of the course of a lesson with 11 to 12 years olds who have
received traditional (rules oriented) instruction, although in their last year (grade six) a few
richer problems happened to emerge in the lessons.

The pupils start working while the teacher walks around, assists groups of pupils, and
afterwards conducts the retrospective discussion.
At the start of the lesson the teacher had a brief talk with Mar:

Mar:Then I should first know what is a square meter.
Mar:I do know that a football-ground is a hectare. .
T:How tall are you,Mar?
Mar:One meter seventy.

T:And now a square meter. Pay attention to "square".
Mar: I see. It is four times a meter (indicating a square).
T: This desk, is it as big as a square meter? ( in fact it is 1.30 m . by 0.70 ).
Mar: No,it isn't square, so it is not a square meter..

Follows some explanation. Mar is progressing but time and again new obstacles arise; for
instance, when The Netherlands is modelled into a rectangle of 200 km by 300 , and the area
should be calculated. The estimated dimensions are to the point but 200x300 is done by column
arithmetic. Mar's mathematical activities oscillate move between two extremes: intelligent estimating
and thoughtless calculating.

Most of the pupils appear to know very well what size a square meter is, and understand
decently what is area, but they still lack the mathematical attitude of trying a multiplication related to
the 36,842 square meter, or starting at the other side, that is to make an estimate of the size of The
Netherlands on the strength of available experience. They reproach the teacher walking around:"It
is so big a number that one cannot imagine it, so there is nothing to comment."

They are given a hint; the size of a garden or so. It suffices to put them on the right track.
In due course everybody is adjusted to explore wether the 36,842 square meters are possible. In
retrospect the pupils deliver the comment (briefly summarised):

-If it were true, hundreds of people would live on a square meter because millions are
living on the 36,842; so that is impossible;

-36,842 square meters is like a strip long 36 km and wide 1 m, and that is rather like a path
through The Netherlands;

-36,842 square meters is not much more than a rectangle of 200 meter by 180 ,that is about
six football-grouds-it is good for Gulliver's Lilliput;

-The Netherlands is about a rectangle of 200 km by 300 (cf. Mar's estimation), thus
36,842 square meters cannot be right.

All these comments are discussed. Almost all can follow the various reasonings and
compare them with their own solutions. The last among these comments gives the teacher the
opportunity to ask for the factual origin of the error. The whole group agrees that it should have
been square kilometers. Then the teacher raises the question:How could right 36,842 square
kilometers have come out?
In a final discussion objections are summarised:What about rivers, lakes, hills?Do they belong to
the area of 36,842 square km?
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What about the tides? Isn't our country larger at high tide than at low tide? How big can the
difference be? Isn't the area to be considered as a variable?Finally the crucial question:" Wouldn't
such a precise number be posssible on the strength of some model of The Netherlands?"
The teacher herself explains things: the fixed low tide line and the fixed map model define the
calculation. In detail this model differs from reality. That then is how the size of The Netherlands is
verified.

The foregoing was a good starting point. This is proved by a newspaper cutting:

The classification obtained by this method has functioned
for a certain time as shadow classification, never included
into official tables. It is, however, attractive to have a
closer look to this equivalising formula. Since it requires
some arithmetic, let us restrict ourselves to The Nether-
lands. The country has about 14 million inhabitants,
versus the 3 billions of the US, that is twohundred ti-
mes as much. The area of The Netherlands is, say, 40,000
square meters, versus the 33,000 square kilometers of the
US, that is thousand times as much. This weighed against
each other yields for The Netherlands a population coefficient
one fifth of that of the US.

In a test 312 future primary school teachers were asked a comment on this newspaper
cutting. The scores were both revealing and distressing:

Correct : 18
Wrong :191
No answer:103
Many students performed their calculations exactly by means of column procedures. This

indeed was the most essential shortcoming which could be observed,because this resulted in the
production of failures which were not in the article. Other mistakes were sloppy arithmetic and the
wrong processing of magnitudes and big numbers (Jacobs,1986).

Remarks:
Obviously the future teachers (as well as some of the pupils of the former example) lacked

the notion that and how numerical data are anchored in reality and, with regard to measuring, did
not have to their disposal reference points such as the size of a football-ground,the size of a
country, the number of inhabitants. Mathematics education should aim at developing personal
scales of familiar and lived through measures such as:

-the distance between home and school, also measured in time, walking and biking;
-one's own weight and stature;
-one's walking and biking distance per hour;
-the height of a house, a twenty stores building;
-the size of the playground, a football-ground, and so on.
Such personal scales, the richer the better, form reference frames for solving problems of

the kind as presented.

94.



- 79 -

What do the foregoing examples mean in the context of (re)constructive learning? Of
course they have a merit of their own but in the present context they have been adduced because of
their constructive and productive value.

Educated estimates and implicit experiential data made explicit, strengthen the grasp on
problems, which is one of the functions of construction and production.Solving means tying
connections between the real and the arithmetical world by means of mathematical modelling.
Growing such connections helps developing a mathematical attitude, in particular horizontal
mathematising, that is mathematisimng real world situations (cf.Treffers,1987).Almost all of the
312 future teachers lacked that. mathematical attitude required to clean the mess of data in the
newspaper cutting. This proves that the environment where they learned mathematics differed much
from that of the school lesson.It is comparable with the direction in which the problem solving
courses of Schoenfeld(1987,p.213) have been developed:

With hindsight, I realize that what I succeeded in doing in the most recent versions of my
problem solving course was to create a microcosm of mathematical culture.Mathematics was the
medium of exchange.We talked asbout mathematics, explained it to eachother, shared the false
starts, enjoyed the interaction of personalities. In short, we became mathematical people."

3.3.Seizing the opportunities of continued organising and structuring of mathematical
material,

Pupil's own constructions and productrions is the mirror of the teaching/learning process,
both for the teacher and the educational developer and researcher. Look to a few examples!

Example 1
Grossman(1975) reports about unexpected surprises caused by production tasks.She

presents a few examples of work with first graders. We quote two of them with the teachers'
comments(ibid.p.14-15).

"Mark was having trouble with arithmetic until I gave this assignment.He amazed me and
he proved to himself that not only he could do arithmetic but that he couldn't stop doing it.( He
handed in two extra papers on his own on subsequent days.) The other children loved the activity
too.My feeling was one of constant amazement that they could do it all."

Mark. DecerOber

t hrea
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5-2 10-7
11-8
12-9

8_5' 13- 10
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151772

14-11 20- 17
15-12 21- 18
6- 13 22-1923- no17-14' 2 .2 \
18-15
19-16

_15 D"9,5

1°- 5

17,1-,_ 160 tic:

\s- \c, IC

6 -;

r.,

looc4-1115

"I knew Jon was bright because he understood so well all that I taught in my structured
lessons, wether I followed the syllabus or went just a little beyond it. However, I never suspected
that he could handle number combinations in hundreds and thousands. There I was, teaching
combinations up to twenty, limiting my expectations and the children's ceilings."
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Remarks:
The teachers' comments show that both boys had amply transgressed the limits of the

scholastic domain. Mark's work still reveals traces showing how he reflected on his activities.
After a hesitating start where he scanned the available arithmetic he screwed up courage, became
selfconscious,wrote bigger, and sailed a fixed course through the system he built while
constructing his problems. He transgressed the boundaries of the arithmetic lesson and produced
his own structure. At home he continued intensively- the same Mark who had problems with
arithmetic.

And then Jon! How much curtailed must he have been in his possibilities! He anticipated
on sums, three grades higher in the curriculum; up to 10,000-9,995=5! Like Mark he worked
systematically. Only his written report was a bit untidy.

Both of the boys reflected on what they had learned within the number system, and
consequently they anticipated on the future of the teaching learning process, the one farther than the
other. The teachers were hold up the mirror of their instruction. Especially Mrs.S.( Jon's teacher)
was conscious of this fact.

What would pupils' own constructions and production have mirrored in rich contexts of
realistic instruction?The answer to this question can be found in numbers of publications (cf. Van
den Brink, 1987).

Example 2:
A course of long division can be based on the principles of clever reckoning and

estimating(cf Treffers, 1987). Let the start be

'342 stickers are fairly distributed among 5 children; how many does each of them get?'

In such a situation distributing shall be organised. First the stickers are handed out piecewise, but
soon bigger shares are dispensed. The written report reflects the distributing pattern, which
indicates the distribution process. Subsequent steps on the path of mathematising are predesigned.

1%.147,019450
50'0 .0 a

19'
550 50 50 50 54 50

_Y 8 .a ,8 ,e te

65 a

In the second phase the children are soon satisfied with noting down one column only-'all get the
same, indeed'. Other contexts are being introduced, among which that of grouping. After about 15
lessons the children work on different levels.
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In the third phase the connection is made to decimals and fractions.Estimating according to
powers of 1/10 becomes central but the procedure does not change essentially. Context dependant
answers on divisions with remainder are not neglected. Again and again the opportunity is given to
invent problems, among which illustrations of bare numerical divisions.An example:

6394:12, invent stories belonging to this sum such that the result is, respectively

532 532.84 rem.4
533 532.833333
532 rem. 10 about 530

At crucial points in the course it is asked to invent problems and to solve them by a slow
longwinded manner as well as by a quick and short one - the pupils should learn to reflect on their
learning process and to anticipate on even shorter procedures.

Remarks
With regard to contents the course, sketched above, of long division can be charcterised as
follows:

-a process of clever calculating and estimating, integrated in context problems;
-a process of progressive mathematising arithmetical methods, in the present case by

means of schematising and shortening.
Such an approach of division starts with the informal methods of the children, which are

organised and structured. Construction and production play an important part in the process of
progressive schematising and shortening, which are aspects of progressive mathematising. During
the teaching/learning process the solution of applied problems are continuously subjected to
inventarisation. Continuously the question of possible shortening is raised. The procedures arising
in the course of shortening function in the course to be followed: beacons for those who nearly
reached the same level of mathematising. The ultimate standard algorithm of long division is
predesigned in this process as the utterly shortened procedure.

In a sense this mirrors the historical process of algorithmising long division ( as well as the
other operations on whole numbers; cf. Menninger, 1958 ). In fact the present course was at least
practically inspired by the view on the historical development.

Comparative research undertaken in our country has proved that this approach is by far
superior to the traditional one. An experimental group attained in half the time a result almost twice
as good as a control group which had been tatight traditionally (cf. Rengering,1983;Treffers,1987).
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exp. contr.

difficult divisions
(zeros in dividend or divisor,etc.) 85% 45%

applications 70% 45%

Scores in long division - traditional method vs. progressive schematising.

The results on the traditional method have been confirmed by other research, also in other
countries.

3.4 Uncovering learning processes and reversing wrong trends

We have already noticed the diagnostic value of own constructions and productions,
mirrors as it were, illustrating the teaching as well as the learning process.

At present we will consider the diagnostic value for the learning process, in particular cases
where constructions and productions reveal wrong ideas and misconceptions.

Example
The class had elaborated and described two distribution situations (cp. Streefland

,1984;1987),It was quite early in the teaching/learning process,after a number of suchlike activities
in the past. The teacher judged it the just moment to proceed to the first task of free production in
this domain. The pupils were chalenged to think out such 'number sentences' as had been met in
the distribution situations, that is, with halves, fourths and- for the courageous ones- eighths, with
'plus' and 'minus' ,maybe even with 'times', sums matching distributions.

Michael produced the following:

3

twa-

x
, ,

13-k

l't-11=-1-.I 1? =

31
_ .

.0s =o
lit +.

T 4

L:.

His work is typic for -world-wide- mistakes, I called it "N-distractors".(cf. Hart
,1981;Hasemann,1987; Streefland,1984; and many others).
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Remarks
The diagnosis is clear.The mistakes are the consequence of yielding to the temptation of

whole numbers and their rules. It shows that the constitution of the mental object "fraction" has not
progressed far enough to resist this temptation. Numerators and denominators were still operated
upon separately; their conceptual interdependance was neglected.

The task had been set too early, at least for Michael. The concrete sources had been
switched off prematurely. Stating this goes to the heart of the function here envisaged. In their
own constructions and productions pupils can disclose their wrong ideas and misconceptions. In
other words: Own constructions and productions unveil the -possibly wrong- personal theoretic
basis of reflexion and anticipation in the teaching/learning process. This enhances the diagnostic
value of the material. A correct diagnosis promises successful remediation both of learning and
teaching.

As a matter of fact this is closely related to ideas in Sinclair's and Vergnaud's PME-XI
addresses at Montreal. Indeed, what has happened? Michael reckoned among others 1/4+1/4=2/8
Remediation can start with eliciting a conflict. In the concrete ( imaginable, meaningful )
environment a new solution can be tried: Four children share two pizzas.Make a distribution-how
much does each of them get? The solution may be e (one fourth and one fourth are two
fourths, which is one half ).Some children don't experience this as a conflict.(cf. Streefland,1984;
Hasemann, 1987). In these children's conception the result ( still) depends on the solving method,
that is, on the level at which the solution is conceived ( concrete vs. symbolic ).This level
dependance is an example of what Sinclair (1987) named a " normative fact ", and Vergnaud
(1987) " theory in action ".

3.5.Producing terminology. symbols. notations. schemes. and_models serving both the
horizontal and vertical mathematisation

Children learning mathematics can, by their constructions and productions, contribute to its
working apparatus.

Example 1
Madell (1985) reported about the personal algorithms for subtraction, developed by pupils

of the Village Community School in New York: Their 'natural' informal methods of performing
the operation had the following characteristics:

-both working (partly) ) per column and from left to right;
-working with position-values in stead of the numbers per position;
-working with deficits and borrowing from tens; nobody applied the standard procedure of

borrowing;
-working along the lines of proceeding abbreviation.

Let us have a look at an example, reflecting the features just mentioned.

8371
37541

Stephen'. Running rota/ (Abbreviated)

8000 - 3000 = 5000700 - 300 = 4005000- 400 = 4600
70 50 = 204600+ 20 = 4620

- t . 3
4620 - 3 = 4617

How can you exploin the
Combined usage of addition
end subtraction in Stephens
method

( quoted from Labinowicz,1987,p.381 ).
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This own invention of column subtraction may be used in the development of a standard
procedure, deviating from the usual one.

8371
3754
5000-400+20-3=4617 (a)

The written report, however, could also have looked like this:

8371
3754
5000

4600
+2 4620

-3 4617
4617 (b)

This is positional working from the left to the right with 'deficits' which occur quite naturally.
Method ( b), however, can be shortened by means of a new notation, namely:

8371
3754
5223 (c)

Remarks
The self constructed notation served the development of an algorithm for column

subtraction, while working from the left to the right, it is stated that 8,000 minus 3,000 equals
5,000,300 minus 700 is 400 short (notation ® with the background reasoning that subtracting 300
is still possible , with the result 0, and subtracting 400 more brings©at the place; and so on.)

The deficits can also be indicated by parantheses or by upper dashes (C.pupils work).

5?

1.
'3

.543
3 3
383

611.3
3y36
3
3481

9 3u
1 CS
1.1:g

9170

4 CI "f Os6;8

All notations are shortenings of the more extended ones in (a) or (b).
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For the transition from 5423 to 4617 money can be used as a meaningful positional
material: property 5,000 debt 400 This is a way one can use children's informal methods to
start a process of algorithmising, based on clever calculating and steered by progressive
mathematising. The production of new forms of notations mirrors the reflexion on the course of
thought and creates the possibility to shorten the developed method.

Regularly such approaches are met with in publications.Apart from that, the possible
consequencies for the outline of the prcigramme for the algorithms usually are not recognized, dealt
with and elaborated.

Anyhow Madell did not.According to what has been shown with respect to this, the usual
algorithm for subtraction would have to leave the field.( after Treffers, Feijs en De Moor, 1988).

Example 2
Dividing per unit and several units simultaneously in distribution situations is an

oppotunity for children learning fractions to produce equivalences by themselves. In the
distribution activity 1/4 and 1/4 go together with 1/2, and 1/2 can be decomposed (among others)
into 1/4 and 1/4.

During our education developmental research (cf.4) pupils contrived such terms as 'hiding
name' or 'conceal name' to indicate non-standard names for fractions.Such terms facilitated the
communication but also described it efficiently (The Dutch word ' schuilnaam' sounds less
'learned' than English 'pseudonym ).The quest for a fitting term for some ( mathematical)
phenomenon can elicit reflexion, as this example shows.

The most suitable propositions that were offered, also proved to have a long term
predictive value.(cf.Treffers & Goffree ,1985;Streefland ,1988).

Example 3
In more extensive situations such as 'dividing 18 pizzas among 24 children' the actual

distribution, wether pictorial or imagined, is too laborious.In our education developmental research
some children got to use the service at tables as a means to reduce the situation to manageable
proportions.ThinIcing about it they found out the symbolifor 24 children around a table with 18
pizzas.This made it possible to represent the service at tab es on paper. It led to organising and
structuring activities such as building schemes that expressed variations in table services. For
instance.

or

16

that is, two tables instead of oneW

with the tables9 and

10I
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At all given moments this schemes-building can be interrupted. At one table everybody's
fair share can be determined. In this way any distribution situation is being made accessible to the
pupils via the double action of fair sharing at one table and the fair table service. Time and again the
learner will reconstruct the food/consumers relation. This leads to an operational concept of fraction
and ratio in their mutual relation. The scheme that is developed organises in an almost evident way
the production of tables equivalent with regard to fairness. The food/consumers relation of the
original situation shall be mentally continued at each step:ratio conservation. Schematising goes on
with table service in the background. The context situation fulfils a model function: the model
situation of table service becomes a situation model.(cf.Treffers &Goffree,1985;Streefland, 1986).

Remarks
The quest for fitting symbols for distribution situations and schemes-building for table

services supported by this symbol elicit reflexions uncovering the process of horizontal
mathematisation.

Distribution situations are being located within mathematics. Anticipation is being
encouraged by the opportunities of progressive schematisation, which emerge as naturally as in the
example of long division. How does this happen?.

The self- contrived symbol and the patterns in which it occurs allow to compare situations
with each other by decomposing them in equivalent partial tables which can more easily be
compared, for instance tables with the same number ofluests.The symbolQis a metonym for the
situation and the scheme is based on the situation model of table service, which functions as a
cognitive process model.(cp. Greeno, 1976).

Continuously applying the scheme leads to two types of shortening, which uncover the
reflexion on the own activities.

The fast is scheme-conserving while the notation is simplified: equivalent branches, or at
least the numbers are omitted so that the essentials of the table service are respected.The second is
shortening in depth like

replaced by

which changes the pattern of the table service with the numbers themselves and their common
divisors steering the shortening.

This involves level-raising in the learning process. The provisionally highest level is
attained when the pupils consciously and systematically start with the reduction by means
of the greatest common divisor while knowing how to verbalise this idea.

Moreover this may lead the learner to focus on proportion tables:
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-3

P
Starting from a given portion 3/4 and looking for matching table services connects 3/4 and

9 with each other, while both of them are still distinguished by the different notation. Pushing
tables side by side generates new tables granting everybody the same portion

(;)
,c,j thus 3 9",

The next step indeed is proportion tables.(Streefland, 1985).

Example 4
19 years old Fynn (1976) told a fascinating story on six years old poor Anna. She had her

own way to manage big numbers.She knew that big numbers could be made ever bigger but she
lacked words to express them. When she would transgress the limits of millions and billions she ,
in order to continue, invented squillions.

Some fine day she told Fynn she could answer a squillion questions."Me too", Fynn said
unimpressed, " but, among half of them wrong". "Not so," Anna said, " all will be good"." Idle
nuts", Fynn thought, "nobody can and she the least ". She deserves rebuke. But Anna did not take
it.

" How much is one plus one plus one r
" Three, of course ".
" How much is one plus two ?"
" Three."
" And eight minus five 7'
" Also three."
Fynn wondered what she was getting at.
" How much is eight minus six plus one ?"
" Three."
" How much is one hundred and three minus one hundred ?"
Fynn interrupted; he felt she was pulling his leg. She was inventing the problems on the

spot and could go on that way untill the cows came home. Nevertheless Anna enthusiastically made
her last move.

" How much is one half plus one half plus
Fynn had got the message.
" How many problems can be answered by three ?"
" Squillions," Fynn said.
" Isn't it funny, Fynn, every number is the answer to squillions of questions "
( hypothetical retranslation from the Dutch version)

Remarks
This own production reveals high level reflexion, typical for a mathematical attitude in the

spirit of Krutetskii (1976) and Freudenthal (1978). The analysis is left to the reader. In the next
section this example will be reconsidered.
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The foregoing examples show the part played by the production of terminology, symbols,
notations, schemes and models in the shaping of mathematisation, horizontal as well as vertical.

4.Education developmental research for the sake of reconstructible instruction

Up to now the stress has been on reconstructive learning, viewed in the learner's
perspective. It started with informal notions and working methods. Reconstruction gradually
moved the learner towards more formal mathematical notions, operations, structures.

( One of the examples was concerned with unlearning_ wrong ideas and methods; notice
that often too little attention is paid to the potential and need of unlearning in instruction ( cf.
Freudenthal, 1983 ).)

The import of reconstructive learning is also at the heart of Anna's message. Curriculum
developers and researchers are seldom aware of such signals. Rather than seriously observing
children and learning from their activities, their constructions and productions, they expect answers
on questions and solutions of problems by prematurely theorizing within topical frameworks. Calls
for change sounded time and again in the literatuire on development and research, are not listened
to. The results of didactical research in teaching arithmetic are badly neglected. Fractions is a telling
example: fresh starts with all old errors repeated. Nothing is learned from lessons such as taught by
didacticions of mathematics like Freudenthal ( 1968 )( 1973 ), Hilton ( 1983 ) or Usiskin ( 1979 ).

A striking illustration of this fact is Brownell & Chazal ( 1932, p.24 ), who from the
results of drill for the mastery of basic skills conclude: " the time and accuracy scores on Test B
were better than on Test A, not because the month's drill had materially raised the level of the
pupils' performance, not because drill had supplied more mature methods of thinking of the
combinations, but because the old methods were employed with greater proficiency ".

By " old methods " the authors mean pupils' own informal solutions, which resist
instruction against the grain.Wouldn't we have made greater progresses in our knowledge about
childrens' mathematical learning if we had built on these telling results of research ?

Does reconstructive learning also apply longitudinally to class instruction ?Our reports
related to the seize of The Netherlands, long division and table service provide indications for
group learning processes.

In order to answer in the affirmative, we have to carry on education developmental
research- research in action.

Such research aims at developing prototypes of courses and theory-building for teaching
and learning in a certain subject area. Instruction experiments start with provisional material. The
teaching/learning process is closely observed. Continual observation and registration of individual
learning processes is at the heart of the research. What matters is that pupils' constructions and free
productions are used for building and shaping the teaching course.

In the variety of children's possible proposals ( look for the kind of problems to be used
(2)) one gets a rich choice to find out what is the best fitting, the farthest prospective, and in the
long run the most effective. Blocking and diverting material is eliminated.

This is no illusion. At ours as well as abroad courses have been developed in this way; for
science, see Driver ( 1987 ) ;for mathematics, see Treffers ( 1987 ).

With the aid of children's constructions and productions a course for fractions closely tied
to ratio and proportion has been developed ( Streefland, 1988 ).

In this kind of design children, by their learning processes, decisively influence course
development- this even extends to supposedly weak learners as some examples proved.

Once more: mathematics education is developed in een experimental situation, where pupils
can contribute by their constructions and productions.
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This nourishes the source for creating reconstructible instruction. The prototype can serve
as a model for establishing and developing derived courses. Such potential instruction is
predesigned in textbooks and manuals.Globally the used generative problems with pupils' usable
long/term constructions and productions, which emerged in the developmental research, will mark
the learning road for fresh pupils' cohorts. In particular the manual will prefigure the material to be
expected from the pupils and help to reorganise it with the view on the sequel. This is a means to
realise teachers aided reconstructible instruction.

Such teaching, rather than transfer of knowledge, is negotiation of meanings (Driver,
1987, p.8 ).No longer does the course represent the teaching contents but : " a programme of
learning tasks, materials, and resources which enable students to reconstruct theirmodels of the
world to be closer to those of school " ( mathematics; added by L.S.)(1.c. p.8 ).

5,Conclusion

The construction principle in education requires a significant part played by children's
constructions. What does this mean for mathematics instruction?

a. With view on horizontal mathematising instruction maintains close bounds with reality.
The basis in reality lends meaning to the mathematical notions, operations, and structures,
envisaged to be produced; and it does so in a way that they become accessible to imagination and
representation. Moreover the pupils get the opportunity to mathematise problem fields from reality
by organising, visualising, schematising, structuring, shortening and so on.

Mathematics learnt shall be applicable in the reality.
b. Courses for fractions, ratio and proportion, for clever calculating and column arithmetic,

and more general, courses that line up with each other should be strongly interwoven . Genuine
reality can be organised mathematically in various ways. This connection should be respected.

c. In the learning process the children should acquire a manifold of aids and tools which
help them to pass selfreliantly from the concrete to the formal ( progressive mathematisation )- a
supply of terminology, symbols, notations, schemes, and models. This distinguishes the
intended approach from the structuralist one where vertical mathematising is overstressed and
formal procedures are imposed ( Dienes, 1973; Treffers, 1987 ).

d. On the road from the concrete to the formal, cooperation, negotiation, and discussion
play an important part. Indeed the variety of constructions and productions brought about by the
open approach invites negotiation of the various proposals for continued activity. For this reason
instruction develops a full measure of interactivity.

e. Organising and structuring of the produced mathematical material with increasing
efficiency is as much as possible the business of the pupils themselves.

Vertical mathematisation was well exemplified by long division and table service, in
particular by the way how individual methods of clever calculations and notations weretransformed

into algorithms.
Such mathematics instruction has proved to be highly productive because it is supported by

pupils' own construction and production.

Within realistic mathematics education a solid empiric basis is laid for theprinciple of
constructivity by having the children contribute to course development. Horizontal and vertical
mathematisation as observed in the historical learning process can be a source of inspiration. In the
light of history reconstructive learning is realised on the individual as well as on the class level.

10 5



90

References:
Brink,J. van den, Children as arithmetic book authors, For the learning of mathematics, 7(2),

1987, 44-48.
Brownell W.A. & C.B. Chazal, The effects of premature drill in third grade arithmetic, Journal of

Educational Research,vol.29,1935, 17-28.
Cobb,P., Information-Processing Psychology and Mathematics Education, Journal ofMathematical

Behavior,6, 1987, 3-40.
Dienes, Z.P., The six stages in the process of learning mathematics, London, 1973.
Driver,R., Changing Conceptions, Paper presented at the International Seminar:Adolescent

Development and School Science, London, 1987.
Freudenthal,H., Why to teach mathematics so as to be useful?, Educational Studies in Mathematics

,1(1,2), 1968, 38.
Freudenthal,H., Mathematics as an Educational Task, Dordrecht, 1973.
Freudenthal,H., Weeding and Sowing. Preface to a Science of Mathematics Education, Dordrecht,

Boston, 1978.
Freudenthal,H., Is heuristics a singular or a plural?, R. Hershkowitz(ed), Proceedings of the

Seventh International Conference PME, Rehovot,1983, 38-50.
Fynn, Mister God,this is Anna, London, 1976.
Greeno,J.G., Cognitive Objectives of Instruction: Theory of knowledge for solving problems and

answering questions, D.Klahr(ed), Cognition and Instruction, Hillsdale(N.Y.),
1976,123-159.

Grossman,R., Open-Ended Lessons Bring Unexpected Surprises, Mathematics Teaching , 71,
1975, 14-15.

Hart,K.M., Children's Understanding of Mathematics:11-16, London, 1981.
Hasemann,K., Pupils' Individual Concepts of Fractions and the Role of Conceptual Conflict in

Conceptual Change, E. Pehkonen(ed), Articles on Mathematics Education, Helsinki, 1987,
25-41.

Hilton,P., Do we still need to teach fractions?, Proceedings of the Fourth International Congress
on Mathematical Education, Boston, 1983, 37-41.

Jacobs ,C:, Rekenen op de PABO, Utrecht, 1986.
Krutetskii,V.A., The Psychology of Mathematical Abilities in Schoolchildren, Chicago, 1976.
Labinowicz,E., Learning from Children, Menlo Park California a.o., 1985.
Madell, R., Children's natural processes, The Arithmetic Teacher, 32, 1985, 20-22.
Menninger,K., Zahlwort and Ziffer, Gottingen, 1958.
Rengering,J., De Staartdeling.Een geintegreerde aanpak volgens het principe van progressieve

schematisering, Utrecht, 1983.
Schoenfeld,A.H.(ed), Cognitive Science and Mathematics Education, London, 1987.
Sinclair,H., Constructivism and the psychology of mathematics, Proceedings of

PME- XI,Vol.l, Montreal, 1987, 28-42.
Streefland,L., Unmasking N-distractors as a source of failures in learning fractions, Proceedings

of PME-8, Sydney, 1984, 142-152.
Streefland,L., Search for the roots of ratio:Some thoughts on the long term learning process

(Towards a theory ?) Part 2: The outline of the long term learning process, Educational
Studies in Mathematics,16, 1985, 75-94.

Streefland, L., Rational Analysis of Realistic Mathematics Education as a Theoretical Source for
Psychology: Fractions as a Paradigm, European Journal of Psychology of Education, 1(2),
1986, 67-83.

Streefland,L., Free production of fraction monographs, Proceedings of PME-XI,Vo1.1, Montreal,
1987, 405-410.

Streefland, L., Realistisch Breukenonderwijs, Utrecht, 1988.
Teule-Sensacq, P.& Vinrich,G., Resolution de Problemes de Division au cycle Elementaire dans

deux types de Situations Didactiques, Educational Studies in Mathematics, 13 , 1982,
177-203.

106



. 91

Treffers,A.& Goffree,F., Rational Analysis of Realistic Mathematics Education-The Wiskobas
Program, Proceedings of PME-9, Vol.2, Utrecht, 1985, 97-123.

Treffers,A.,T.kree Dimensions. A model of goal and theory description in Mathematics
Instruction-The Wiskobas Project, Dordrecht, 1987 a.

Treffers,A.,Integrated Column Arithmetic According to Progressive Schematisation, Educational
Studies in Mathematics, 18, 1987 b, 125-145.

Treffers,A., Beschrijving van eindtermen, Toetsen,Eindtermen en opvattingen over
Wiskunde-Onderwijs, Utrecht, 1987 c , 146-151.

Treffers,A., Feijs, E & De Moor, E.,Proeve van een national programnza voor her
reken-wiskundeonderwijs op de basisschool (5), Tijdschrift voor Nascholing en Onderzoek van het
Rekenwiskundeonderwijs, 6(4), ( in press ).
Usiskin,Z.P.,The Future of Fractions, The Arithmetic Teacher ,1979, 18-20.
Vergnaud,G., About Constructivism, Proceedings of PME -XL, Vol.1, Montreal, 1987, 42-55.

107



RESEARCH
REPORTS

108



92

PERCEPTIONS OF TEACHERS' QUESTIONING STYLES

Janet Ainley

University of Warwick

This paper outlines a small-scale research project which
aims to explore the differing perceptions which teachers
and pupils have of teachers' questioning styles. In
particular, the research focuses on differing perceptions of
the purposes of teachers' questions. The project is based
on small group teaching with children in the primary age
range (5-11). The first part of the paper gives a
preliminary attempt to categorise the purposes of teachers'
questions. The first stages of research, based on
interviewing subjects about their reactions to video-taped
material, are then described. In the final section, some
early results are presented, indicating mis-matches between
teachers' and pupils' perceptions, and ideas for the further
development of the research are discussed.

CATEGORIES OF QUESTIONS

The considerable volume of research into classroom discourse indicates

clearly that not only do teachers do most of the talking, but also that

a large amount of teacher talk is made up of asking questions. (Hargie

(1983) presents a review of such research.) Researchers in

linguistics have categorised teachers' questions in a number of ways

(Barnes (1969), Mishler (1972), Stubbs (1976)). These categorisations

tend to focus on the linguistic form of the exchange, or on the type of

question asked (e.g. open or closed), but do not take account of the

purposes for which classroom questions are asked. These differ

dramatically from the ways in which questions are used in everyday

conversation. In particular, it is very common for teachers, and

particularly teachers of mathematics, to ask questions to which they

already know the answers. What is more, the pupils of whom the

questions are asked know that the teacher already knows the answers.

In the context of normal conversation such behaviour would be

109



- 93 -

considered very strange, and probably impolite. However, it may be

seen as acceptable in other contexts where there is a perceived power

relationship between the questioner and the person questioned (e.g.

parent and child, drill sergeant and recruit. The most obvious

purpose of such questioning is to find out whether the person

questioned (afterwards referred to as 'the subject') knows the answer;

the question is designed to test the subject's knowledge.

However, this is clearly not the only purpose for which teachers ask

questions. The following table sets out a possible categorisation of

the purposes of teachers' questions, viewed from an adult perspective.

category

pseudo-questions

genuine questions

testing questions

directing questions

characteristics

, do we?', '..., isn't it?'
questions only requiring or
allowing agreement

questioner does not know
the answer

questioner does know the
answer, and the subject knows
this

questioner may or may not know
the answer, the subject may or
may not think that she does

purpose

to establish
acceptable
behaviour, and
social contact

to get
information

to find out if
the subject
knows the answer

to provoke the
subject to think
further about a
problem

Three important sub-categories of directing questions are:

structuring questions, typically a sequence of questions which
'activate' the subject's existing knowledge in such a way that
new connections become clear.

opening-up questions which suggest new areas of exploration, such
as 'What would happen if ...', 'Why do you think ...?'

checking questions which encourage pupils to think again about a
statement, such as 'Are you sure?', 'Is that right ?', 'Do you
agree?'

There is a widely held, but largely unspoken,belief amongst teachers

that questioning pupils is 'better' than straightforward exposition.

This is discussed explicitly by Klinzing (1986), in a review of

questioning research in Germany. If questionirig is regarded as a

single activity, without awareness of different styles and purposes of

questions, there may be little foundation for this belief (Ainley

(1986)). Because testing questions are so common, particularly in

mathematics where answers are often seen as being clearly 'right' or
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'wrong', there is a danger that pupils may perceive all teacher

questions in this way. Such a perception would inevitably be

detrimental to attempts to encourage discussion, investigative work or

problem solving in mathematics: pupils will feel that the teacher

always knows the 'right' answers to any question she asks, and further-

more that the teacher is always judging pupils by the answers they give.

It is not surprising that pupils are reluctant to risk giving 'wrong'

answers in these circumstances (Holt (1969)).

THE FIRST RESEARCH STUDY

The study was designed to try to reveal the perceptions which teachers

and their pupils have of particular types of classroom questioning

styles. For this purpose, video-taped extracts of teachers working

with small groups of children were used. The extracts were chosen from

the video tapes which accompany the Open University course, 'Developing

Mathematical Thinking'. The extracts, each approximately five minutes

long, were chosen to show differing styles of questioning on the

part of the teachers, but all involved the introduction of new concepts

by means of practical activities. Six different extracts were chosen

involving children from age six to age eleven.

Four teachers were involved in the first stage of the research, all of

whom were class teachers in primary schools. They were each shown three

of the video-taped extracts, and interviewed about their general

impressions of the teachers they saw, and about their perceptions of

why particular questions were asked. Each teacher then allowed

children to be withdrawn from their classes in groups of four (chosen

by the teacher), to watch the video material. The children watched

two of the extracts which their teacher had seen, and were interviewed

about their reactions to them in the sane way. All the interviews were

recorded on audio tape.

Wherever possible, the children watched video material of pupils the

same age as, or younger than, themselves, in the hope that this would

make it relatively easy for them to understand the mathematical content

of the extracts. Every attempt was made to reassure the children that

they would not be questioned about the mathematics, to reduce the
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possibility of the questions posed by the researcher being perceived as

'teachers' questions'. In fact many of the children were eager to show

how much of the mathematics they had understood, and it was usually

clear from their responses when they were not able to follow the

mathematical content of an extract. The children were also told that

their teacher would not listen to the recordings of what they said.

Several of the children were visibly relieved by this, and in fact many

of them spontaneously made comments about their own teacher's use of

questions, reactions to 'wrong' answers etc. Several other adults,

both mathematics educators and parents of primary school children,

watched some of'the extracts and took part in interviews.

The interviews were conducted in an informal way, not following a set

script. Each participant watched approximately half of each extract

without interruption, and was then asked to comment on what they had

seen.- In the second part, the video tape was stopped at particular

points and specific questions were asked. These questions required an

opinion about why the teacher had asked a question, whether the teacher

knew the answer before she asked a question, whether the teacher's

reaction showed that a pupil had answered correctly or not, and so on.

The questions were always posed in the form 'Why do you think ...?'.

Three or four such questions were asked about each extract. The

interviewer also tried to stimulate more general comments and

discussion by asking questions such as 'Did you like that teacher?',

'How do you think those children are feeling?', and by inviting

comparisons between the different teachers seen in the extracts.

An obvious difficulty with this research is that the interviewer had to

engage in questioning participants directly.. This inevitably raises

difficulties because of the perceived purposes of the interviewer's

questions, and the perceived roles of researcher. and participant. The

greatest danger is that the subject feels that they are being 'tested'

by an interviewer who already 'knows the right answers'. This was'not

often apparent with the children who took part, though it is impossible

to interpret the reasons why some children did not answer some of the

questions. They may have felt anxious about giving a 'wrong' answer, or

may have not understood the question, or may simply have been unable to

express their opinions. Most of the children did not appear to be
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under any stress or anxiety during the interviews, and they talked

willingly when they had some thing to say. But then, they are used to

adults asking them questions all the time.

Some adult subjects showed much more unease about getting the answers

'right'. A mathematics educator who was familiar with the purpose of

the research asked 'Am I giving you the right sort of answers?' towards

the end of his interview. The following exchange indicates the

perceptions of one (fairly senior) teacher, who watched the extracts

with a colleague.

Researcher: (After stopping video tape) Why do you think the
teacher asked that question?

Teacher 1: Well surely it's because ... (comments about content of
the lesson)

Researcher: (No response - hoping for comments from teacher 2)
Teacher 1: Oh well, obviously it wasn't!

INITIAL RESULTS AND FUTURE PLANS

The initial plan in analysing the data gathered from the interviews was

to try to identify how different subjects perceived the teachers'

questions, in terms of the categories outlined above. This was to be

done in two ways: comparing the responses of adults generally with

those of children, and comparing the responses of particular teachers

with those of children in their classes. The first stage was partly a

feasibility study for more extensive research.

Three important problems arose. First, since none of the participants

were shown the categories before the interviews, their responses do not

refer directly to them. It is therefore not easy to interpret many of

the responses in terms of the categories. It would be possible to

rephrase some of the specific questions used in the interviews so that

they refer explicitly to the given categories, or so that they become

multiple choice questions. This would, however, limit the range of

possible responses, and would also mean that different formats might

have to be used for adult and child subjects.

Secondly, it is often only possible to consider the purpose of a

particular question within the context of a longer exchange. On

several occasions adult subjects offered two or more responses to the
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question 'why do you think the teacher asked that?', dependent on how

the conversation might develop.

Thirdly, both children and adults tended to identify strongly with the

people they saw in the extracts, and as a result their responses tended

to be related to the mathematical content or to personalities. Many of

the children became too involved with solving the mathematical problems

to give any attention to particular things that were said. Typical

responses from adults were,

... she's really getting on my nerves,

... well, I wouldn't have started like that,

... she should have used a bigger shape; the children can't
see it!

Despite these difficulties the study has demonstrated the feasibility

of the method for more extensive research and some fairly clear results

emerged. One initial conjecture was that children would tend to

interpret many teacher questions as testing questions,and in particular

that both directing questions and genuine questions might be perceived

in this way. The nature of the extracts meant that there were few

occasions on which teachers asked what appeared to be genuine questions,

and only one of these was highlighted by a specific question from the

researcher. All of the children interviewed thought that the teacher

did not already know the answer to this question.

However there were several instances where teachers interpreted a

question as a directing question, while some of the children,saw the

same question as a testing question. There is insufficient space to

give a detailed context for each incident, but the following examples

give an indication of the differing responses.

Teacher question in extract: How many does that make?
Interviewer's question: Why do you think she asked that?
Teacher response: She wants them to check ... so that they're working

it out for themselves ... She's imposing a
systematic approach.

Child response: To see if they knew.

Teacher question in extract: Seventeen what?
Interviewer's question: Why do you think he asked that?
Teacher response: Because they could have got lost ... he's wanting

them to check.
Child response: To see if they knew ... if it was right.

Teacher question in extract: What's the next one? ... and the next?...
and the next one?
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Interviewer's question: The teacher asked the same question several
times; why do you think she did that?

Teacher response: ...she was doing it to build up the idea of a
pattern. She was hoping they would get used to the
sequence.

Child response: To make sure they'd got it right.
To let her know ... what they'd learnt.

On other occasions, children were strikingly acute in recognising

questions which seemed to be directing/checking questions, even when

these were disguised.

Teacher question in extract: Six? (Repeating a child's answer)
Interviewer's question: Do you think the teacher thought she gave

the right answer?
Teacher response: He was making her think again a way of making her

check that she'd said what she really meant to say.
Child response: It sounded as though he said 'don't be stupid'.

For all of the examples quoted above, there were other examples where

children's responses indicated that their perceptions of the purposes of

questions were very similar to the perceptions of teachers and other

adults.

A much clearer difference between the perceptions of children and those

of adults, and one which was totally unexpected at the start of the

research, concerned the pace of questioning in two of the extracts.This

emerged from general comments about teachers, which were invited both

halfway through each extract, and at the end. No comments were recorded

from adults which contradicted the overall tone of those given below,

although the pace of questioning was not discussed in every interview.

One group of children did show a different response to extract D, which

is discussed later.
Extract C

Teacher/adult comments: He certainly gives them plenty of thinking time,
. it seemed painfully slow ...

Child comments: He doesn't give them enough chance.
He doesn't give them enough time to work it out
... he rushes them all the time ... he wants to
get on to something else.

Extract D
Teacher/adult comments: ...there was very little time to reply ...

I don't know why she kept asking questions ...

... they weren't allowed much thinking time.
Child comments: She didn't, like, rush you into it ... she

asked you questions.

... if you didn't understand it, she talked it
through.

She gave you time ...she never said 'what is
it?' straightaway.

The differing perceptions reflected in these comments is particularly
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striking because it is reversed in the two incidents. A possible

explanation for this lies in the age and experience of the children

interviewed. The children who commented on extract C were clearly

having difficulty following the mathematics involved (subtraction of

hundreds, tens and units). The children whose comments on extract D are

recorded were eleven-year-olds, and found the investigation in the

extract relatively easy. One group of less able children made comments

on the same extract which indicated that they felt the teacher was

hurrying the children. Further research is planned using the'same

extracts to explore this conjecture.

The continuation of this research is based on making video recordings of

several teachers working with children from their own classes. The

activity used will be the same in each case, so that comparison between

situations will be simplified. The teachers and children who take part

will be shown their own tape, and possibly also tape of other groups,

and a similar interview technique will be used to compare perceptions

of particular conversations.
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TEACHER CHANGE AS A RESULT OF COUNSELLING

Jeanne Albert Alex Friedlander Barbara Fresko

Weizmann Institute of Science, Israel

In a project based on in-school in-service teacher education,
the project staff defined some criteria for effective
teaching of mathematics--for example, variety in teaching
style, cognitive level of questioning, etc.
The analysis of project records led to the creation of
teacher profiles (ineffective, effective and desirable) which
were used to evaluate the effect of the project on each
teacher.
As a result of two years of project activities we can report
progress in both teacher change and student achievement.

INTRODUCTION

This paper describes the process of teacher change as a result of an

ongoing three-year project aimed at improving mathematics teaching and

student achievement in two Israeli urban schools. The target population

of this project is about 20 teachers and their 7th through 9th grade

students, who were studying mathematics in about 80 different classes at

the upper two (of three) ability levels. Four counsellors paid weekly

visits to the two participating schools, and were employed part-time for

the project by the Department of Science Teaching at the Weizmann

Institute. For the rest of the time, they were practising teachers in

schools of their own.

The project's main intervention relied on observation-based counselling.

Each of the four counsellors worked withfour to six teachers. As in

other counselling projects (Apelman, 1981) we repeatedly emphasised to

all involved, that the counsellors did not have, and were not interested

in any administrative supervising authority, and that their relationship

with the teachers was strictly professional.

PROJECT DESCRIPTION

During the first two years of the project, a teacher's lesson was

observed at intervals of two or three weeks. All visits were scheduled

in advance and dependent on teacher consent. Notes were taken freely

during the observed lesson, and short, one-sheet observation forms were

completed the same day. Each observation was followed by a ten- to

forty-minute discussion between counsellor and teacher of the observed

lesson.
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In addition to observation-based counselling, the project staff conducted

the following activities:

--- Weekly workshops on mathematical and didactical topics of general

interest (e.g., the treatment of lack of prerequisite knowledge, design

of class tests to obtain cognitively balanced set of test items, checking

homework, using calculators, curriculum planning, techniques.for teaching

selected topics, etc.).

- --"Open lessons" - i.e., lessons taught by one of the teachers and

observed and discussed by the rest of the mathematics teaching staff.

The analysis of written records and personal accounts led to the

definition of the following flaws in teaching style and lesson content

that tended to turn up repeatedly in the observed classrooms:

Teaching style.

- Lack of variety -- an excessive use of frontal teaching or ineffective

seatwork during most of the class period.

Lack of teaching aids their complete absence or ineffective

implementation.

- Inefficient homework checking -- mainly the allotment of excessive time

and the use of ineffective strategies.

Lesson content.

- Lack of objectives -- sloppy or non-existent planning of lessons.

- Lack of variety in questioning the dedication of whole lessons to

questions on a uniformly low or too high cognitive level.

- Ignoring lack of prerequisite knowledge -- improper or complete lack of

treatment of student deficiencies in this field.

- Lack of teacher knowledge of mathematical content.

Characteristically, the teacher-counsellor sessions that followed

observed lessons concentrated less on discussing "what went wrong?" but

rather on working out things that "might be done differently".

PROCESS OF TEACHER CHANGE

An analysis of the records of classroom observation and subsequent

counselling led to the following categorization of teaching as (1)

effective, (2) ineffective, or (3) desirable. Each of these categories

will be described, and change of teaching (i.e., movement within or

between categories) as a result of the project intervention will be

considered and illustrated by examples.
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1. Effective teaching exhibits many of the following qualities: good

class management, clear and correct mathematical content, well-planned

lessons resulting in a feeling of learning, good learning environment,

continual student appraisal with adaptation of teaching accordingly,

and well designed homework.

2. Ineffective teaching will, naturally, contain a high percentage of the

opposite "qualities".

3. The teaching considered by the project staff as desirable would have,

in addition to the characteristics of effective teaching, some of the

following qualities: varied teaching style, high student involvement,

effective use of teaching aids, inclusion of high cognitive level

questions.

The purpose of the project was to cause change from effective, or

ineffective teaching towards a "desirable" style. Diagram la presents

schematically the three categories of teaching described above and the

potential directions of change. The number of teachers in each category,

as observed during the first half of the year, are indicated in

parentheses.

The process of change undoubtedly requires a long period of time and

considerable effort (see also Ryan, 1984). As indicated by Blanchard

(1981), before any actual change in teaching occurs, a teacher's

awareness of a short-fall in his/her teaching must exist or be created.

This awareness can be developed and observed in counselling sessions or

informal counsellor-teacher conversation, but does not necessarily

manifest itself in classroom teaching.

Observation records also indicate that changes in teaching are not

monotonic. In most cases, the transition from one category of teaching

to another is not sudden and definitive. Lapses into a previous stage

were observed in spite of evidence that the overall direction was

positive. It would seem clear that a period of time is needed to

stabilize any progress made. Change should, therefore, be considered a

process of gradual increase in desirable characteristics of teaching, and

a corresponding decrease in practices characteristic of ineffective

teaching. It is also clear that the time required to develop awareness

of teaching "deficiencies", to create change and to achieve stability

(not in the sense of stagnation, but in the sense of overall desirable
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teaching behavior, without serious lapses) is a variable dependent on

each teacher.

Diagram lb presents an overview of change (or lack of change) as observed

during the project's first two years, with the corresponding numbers of

the participating teachers in parentheses.

Ineffective

No effect (3)
Awareness created (I)

Effective

Desirable

(a)
(b)

Dia ram 1: Categories of teachers by observed change as result ofproject intervention during two years.
(The numbers refer to teachers who participated in the project duringboth years.)

The following three case studies illustrate the categories of teaching
mentioned above, and the effect of counselling on the corresponding

teachers.

Teacher A entered the project as a very good teacher using varied

teaching strategies and relating well to each pupil individually. (That

is, the qualities of her teaching were considered "desirable".) The

counsellor provided her with more varied ideas and, most important, gave

her positive feedback and encouragement to continue on her way. This

encouragement enabled A to reach her potential, and play an active role

in the process of changing the other staff members.

In contrast, teachers B and C started as ineffective teachers. They

would open the book, and assign the next page, without deciding which
exercises are necessary or desirable. Consequently, most of their

lessons were devoted to checking homework. Their explanations were clear

but technical, and were much like cookbook recipes -- "this is how you do

it, and now to the same." A typical lesson would comprise an explanation

followed by a disorganised "ping-pong" of questions and answers between

these teachers and the'students. Students in their classes tended to be

bored and disruptive.

By the end of the first year, B willingly accepted his counsellor's

comments, but no actual change in his teaching style or lesson contents
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had been observed. B's awareness of short-falls in his teaching had been

created, but this had not led to change. During the second year, B's

teaching in his 7th grade classes showed a marked improvement. He had

internalized the teaching suggestions and was utilizing them effectively,

even adding his own ideas. In the first year of the project, he was

teaching only 7th grade classes and so only those subjects were

discussed. Teacher B did not make the transfer to his 8th grade classes

and during the second year his teaching and his students' reaction in

those classes continued to be problematic.

This year--the third year--Teacher B extended his change in teaching to

his 8th grade classes as well and now is quite an effective teacher. He

has learned to plan his lessons, make use of teaching aids and pose

questions at varied cognitive levels.

To conclude, Teacher B took almost a year each time to internalize the

advice given, and was unable to transfer ideas from grade to grade.

Initially, he was unsympathetic to the counsellor's workshops, but now is

one of her biggest supporters. He still needs to stabilize his new

pattern of teaching.

Teacher C, however, is still stagnating at the end of two years. He sees

no reason to change his teaching, and considers his style appropriate for

students of junior high school age. We have not yet found a way of

arousing his awareness.

The following three tables provide data that illustrate changes in

teaching style, in cognitive level of questioning and in the use of

teaching aids for the above three teachers.

Table 1: Change in teaching styles measured in terms of time spent
in each lesson.

FRONTAL TEACHING I INDIVIDUAL WORK

start of end of I start of end of
project 2nd year project 2nd year

I a small

half
B almost all half none half
C almost all

half half

almost all none

half

all amount

BEST COPY AVAILABLE
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Table 2: Change in cognitive level of questioning measured as part
of overall questioning in each lesson.

TECHNICAL QUENSTIONS QUESTIONS REQUIRING
COMPREHENSION

start of end of start of end of
project 2nd year ,project 2nd year

A more then
half

less than
half

some over half

B almost all half very few half

C almost all half none half

Table 3: Change in use of teaching aids

start of project I 'end of 2nd year

A

B

C

blkbrd, colored chalk,
worksheets, games, number lines

blkbrd, colored chalk,
worksheets, games

blkbrd
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blkbrd, worksheets,
flashcards, calculators, games

blkbrd, poster, cut-out
geometric shapes, workcards,
worksheets

blkbrd, colored chalk
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TEACHER CHANGE AND STUDENT ACHIEVEMENT

The ultimate goal of this project was to improve student achievement. We

believe that this can be done only by working directly with teachers on

improving their style of teaching. The results presented in Table 4

support this belief. The results are based on two achievement tests -

administered to the seventh graders of one of the two participating

schools at the beginning and the end of the school year. As can be seen,

teacher change had a considerable impact on student achievement. The

classes of the "unchanged" teachers started the year at the same or even

at higher level as compared to the others, but achieved less by the end

of the year.

Table 4: Influence of teacher change on student achievement (in
percentages)

categorization of
teaching

Idesirable

change-ineffective
change-effective

no change-inffective
gano change-effective P

+ + + +

1st test
common fractions
(at the start of
7th grade)

2nd test
7th grade mathematics
(at the end of 7th grade)

.

58 68 I

60 60
57 68

0

CONCLUSION

The model for in-school in-service teaching counselling described above

was designed as a means of, improving student achievement by increasing

the effectiveness and the level of teaching mathematics. The counsellors

isolated a relatively small number of serious flaws in teaching style

that tended to turn up repeatedly in the observed classrooms, and through

rather intensive intervention, attempted to induce change in a direction

considered by them "desirable".

As a result of two years of project activities we can report progress in

both teacher change and student achievement. However, the progress made

is only partial and any change obtained needs further stabilization.
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CODIDACTIC SYSTEM IN THE COURSE OF MATHEMATICS:

ROW TO INTRODUCE IT ?

Daniel Alibert

Research Group about the teaching of mathematics at University
level:Daniel Alibert(Institut Fourier(UA CNRS) at J.E.de

Didactique) , Marc Legrand, Francoiee Richard ( Jeune Equipe
CNRS de Didactique des Mathomatiques at de 1'Informatique).

University Joseph Fourier. Grenoble(FRANCE).

In the preceding research report, at PME 11, we
presented a teaching experimentation in the course of
mathematics, at University level [2]:a large place for
uncertainty is left within the teaching process,
institutionalized by the notion of conjecture, the
validation of which, and sometimes even the
production , is devoluted to the collectivity of

students (these conjectures concern parts of the
mathematical knowledge that students must learn during
the year in their curriculum), proof arguments given
by a student aren't adressed to the teacher, but , in
some form of "scientific debate" , to the other
students. To introduce this alteration of the usual
didactic "coutume" in the classroom, we use some
definite actions as regards the role and rules of

debate and the constitution of some scientific
autonomy for each student , that we analyze in this
report.

Si "ProblAmatique" and general theoretical framework.

Our general "problematique" in this experimentation has been

detailed in the preceeding report, and we recall it briefly here:

In mathematical productions of many students in the beginning of

their first year at University it is frequently observed that the

control of meaning does not seem primary. Often the syntactic

characters prevail over the semantic ones.

Another observation is the lack of interest for proof as a

functional tool: it is only a formal exercise to be done for the

teacher. It seems to have no deep necessity.

These observations, for students that begin scientific

studies at University , show that mathematics aren't acknowledged
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as a scientific subject which has been developped for playing a

role in the resolution of problems and the understanding of

reality.

We will now define our theoretical framework:

- First the constructiviat model as model of knowledge

acquisition: students construct their own knowledge through

desegoilibration of an old one in problems, interactions,

conflicts, and reequilibration in which mathematic knowledge, other

students, teacher are involved: we consider the role of the group

of students in the learning processes to be very important, and

especially in the construction of meaning.

- Metamathematics factors, such as representation systems of

what are mathematics, how one learns mathematics, are very

important in learning processes, especially when a student is

solving problems. Moreover we think that, at University level at

least, it is possible to act on these factors by an explicit work

(5).

- lastly , we think that a true 1 g of mathematics, in its

scientific extension, must include the constitution of a "learner's

epistemology" which is not only a school one: by "learner's

epistemology", we mean the set of problems, situations, that ,

according to the personal experience of a student, has come with

the introduction , the progressive constitution of a concept, and

therefore gives, for this particular student a particular meaning

to this concept.We can do the same remark as regards the image of

mathematics in general given by usual teaching practices:

Formulation of conjectures and proposition of proofs are two

fundamental aspects of the professional mathematician's work. These

practices, which constitute real mathematics, are generally absent

in teaching process: mathematics are presented as an achieved body,

where "all is certitude ". The epistemology generated by such

teaching practices is diametrically opposed with mathematical

reality.

So we think that the necessity, the functionality of proof can

only appear in a .situation in which the students meet uncertainty

about the truth of really important and useful (for them)

mathematical propositions, not only about more or less anecdotal

exercises: Scientific Debate takes place during the lesson about

these statements.

In this report we will study a more particular problem, inside

the whole experimentation: students, at their entry at University

have some customs, as regards mathematics, learning of mathematics,
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or proof in mathematics. They have something like a model of the

respective roles of teacher and pupils' in a classroom, what

behaviour can be expected of eachone in this little "society" in

short we call it the "coutume". Is it possible to change this

"coutume" and try to constitute anotherone, and how can we manage

such an evolution in few weeks at the beginning of the academic

year in order to use a new "coutume", which is characterized as the

codidactic one [2) (3), during the greatest part '7

S2 Description of the experimentation:

The experimentation of Grenoble takes place in a section of

about one hundred students in the so-called Deug A (students are

in their first year at University, they have courses in

mathematics, informatics, physics, chemistry ).The experimentation

goes on during the whole academic year: lessons are given to the

whole section in an ordinary amphitheatre. This section is one of

four sections of DeugAl: the others have different

organisation. The students are not selected: they receive a, short

information about the different teaching methods before they entry

in a section, and they make their choice. This experimentation

began in 1984.

(1) First we give some information about the presentation of

the sections from which students chose in which one they'll

register. This year, and more or less in the same way the previous,

it was done in two times: First in July every student that wanted

to go at University next October in a section of Deug Al recieved a

paper in which the four sections presented themselves. In our

presentation, we emphazised that

"some fundamental concepts in mathematics are built in

ieterantioewithelegante from problems often linked with

modelisation of physical problems",- "a qualitative analysis of

concepts is developped through discussions and debates managed by

the teacher",

and we proposed the following contract: teachers favour

different kind of expression of students students, in .tuin,

accept to imply themselves in the knowledge they have to learn, and

to go into an interactive practice in which error is not considered

a fault, nor its analysis a loose Of time".

Next in October , before the final registration, there was a

presentation of each section by the teachers : it consisted in a

correction of some exercises students had to solve during summer
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holidays (in math, physics, chemistry). .During such presentation

students can really see, in action, the different methods used in

different sections. In our presentation (about half an hour long),

the teacher chose to correct only a little part of the exercises, a

conjecture:

" limits of x sin(1/x) and x cos(1/x), in 0, are equal "

and began to organize a debate about the validity of this

statement: "vho thinks it's true? who thinks it's false? vho can't

give an answer? ". During this short debate, some wrong answers

were considered, discussed, and students encouraged to give their

advice, and their arguments.

(2)The first courses of mathematics: during the first lesson of

the year, the teacher presented the new "coutume" that was going

to be used during the course. This new coutume was partly explicit,

and partly used without explanation, about a very simple

mathematical problem. The teacher asked a question , then organized

a debate, without explicit rules, about the validity of answers,

and concluded more or lees with students. Last two years the

question was:

"let f:E F be an application, I, Y parts of E, is there any

relation between f(X), f(Y), and f(XUY) ? I give you 2 or 3 minutes

of reflexion to propose some conjecture... "

Typically, 15 or more statements were proposed by students,

many of them false, or not clear, using "4." instead of "U" for

instance. The teacher write these statements on the blackboard

without any comment, trying to give by his attitude no advice about

their validity ( this is a first rule, see (2)) and immediately

some students wanted to refute some propositions: the teacher

instituted a rule: all statements are written before the debate
began

Every year, there are two or three such lessons, along which

some rules are progressively put, very simple ones: speak loudly,

speak for the other students, listen to one another ...- or more

hidden others: the teacher, since the first lesson, has some

precise attitudes, for instance:

- facing a question, if he thinks that it's a question for many

students, he asks for the production of a conjecture;

-when a problem has been put, he takes movers as conjectures

proposed by students, write them on the blackboard without any

comment. Then he waits some time (2 or 3 minutes, 5 if necessary)

for reflection and asks for a vote:" Who thinks this statement
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true, false, who can't decide, or refuses to decide ?", then for

mathematical arguments for, or against, the statement.

In such a way, the idea that to formulate a conjecture is

authorized, and useful, the idea that a mistake is not a fault, but

a normal stage in learning and doing science ... are settled in the

community of students.

It is observed , at this stage, that very frequently the

teacher has to close a debate by giving his opinion about the

question, because students can't decide and convince one another.

(3) It is time to have a special lesson that we call "the

circuit": the aim of this lesson is to give students means to

refute a statement, and as a consequence some scientific autonomy

within their community. This lesson produces a rule:

"In mathematics a statement is true if and only'if it has no

counter-example".

Observation shows that this rule is not easily accepted by all

students: if a statement is true in all cases except one, it is

unusual, in life time, to tell that it's false! "The circuit" uses

a scheme of a very simple electric circuit to formulate

conjectures, refute them, and progressively reach the logical rules

used in mathematics: it is very important that the math context do

not hide the logical problems.

(4) Generally at most four lessons (of 2 hours) have been spent

at this stage, and the main rules of the new "coutume" have been

used and some explioitly stated to students. The teacher have then

to reinforce them by a frequent use (there is not a debate in every

lesson), and some weeks later to recall some of them if necessary,

often having some examples of very fruitful debates to support the

interest of this form of mathematics teaching.

A3 Methodology of the study:

To analyze this part of the experimentation, we use classical

methods (2):

(1) An open questionnaire: at the end of the presentation of

the section (see S2), students were asked to answer a questionnaire

and to give us back before the first mathematical course of the

section . It is a long questionnaire (13 questions) about

mathematics, teaching mathematics, learning mathematics. As regards

the problem presented here, we use it mainly to study

-what are their ideas about "good teacher", "good teaching

method", "how to be a good student in maths", "whether collective
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work is useful to learn mathematics" in order to have an insight

about the "coutume" they have before their entry in the section.(4)

- why they chose our section, what change in teaching they

expected at their arrival at University, in order to know what

variation of the "coutume" they already have anticipated (some

answers about this second question can appear in the first one)

- what are their ideas about "doing mathematics".

(2) The lectures are recorded observed and analyzed through a

definite grid of interpretation, to see what is creating obstacles

or facilitating the installation of the new "coutume", how the

behaviour of students is transformed along successive lessons, how

many of them really participate to debates.

More precisely we try to answer the following questions: what

rules are introduced by the teacher, at what stage of the course,

through what action, are they implicite or rather explicitely

stated ? What kind of questions do students ask? Are they of the

old "coutume" (i.e. adreseed to the teacher, or only to ask for a

detail, for an immediate answer), are they of a lees usual kind

(i.e.conjectures proposed to the group of students, not only of

school form, about epistemology of concepts ) ? What kind of

answers -do students give ? What is the global attitude of the

group, passively listening the course, actively trying to find

conjectures, or arguing about conjectures, or solving problems ... ?

S4 Some results and perspectives:

First we give some indications from the questionnaire in order

to get a.kind of "state of the coutume":

- A good mathematic teacher is first a "good teacher":

interesting, convincing, clear, quiet (52%) . In 11% of answers

only we find such things like "helps students to reflect, to

participate..."

- A good mathematic student must, above all, "work", "train

himself" (85%), "know his math course" (45%). In contrast with the

11% just quoted, 45% of students think a good student must have an

active attitude as regards knowledge: "to have some critical sense,

to search, to argue, to deepen _"

As a reference, trying to know whether our students are

self-selected on account of the characters of the section, we use

an analogous study, at the pre-universitary level (4]: a great

majority of pupils (75%) uses expressions like "clear, giving

explanations at pupil's level_" in order to describe a good math
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teacher, and " to work" is the first quality of a good math learner

(76%) , 34% only uses expressions of the kind of "to work with an

active attitude".

We see that there is only a little difference, if there is one,

between students enterring our section and these reference pupils:

if there is a self-selection, it does not concern these characters

(probably there is only a little potential in this domain).

On the other hand, we notice that these students are open to

change their working methods: 03% think that collective resolution

of problems may be fruitful, and 64% that collective work is

potentially interesting for general learning of math. Their

expectations, at the beginning of Uhiversitary studies are less

definite: more responsability, liberty,, less contact with teachers.

Less than 20% expect really a more active participation within math

course. Lastly, the epistemology underlying the "coutume" is a

little problematic one: less than one third of students uses

expressions containing the word "problem" as regards the activity

of professional mathematicians, though in the same time almost

everyone thinks math are useful (in physics, chemistry, economy,

current life... ).

As regards the installation of the new "coutume" we have

observed that after the "circuit" lesson, a great part of students

were really active in debates and the main rules were installed and

devoluted to the collectivity: it was frequently students that

recall it if necessary. So we think that the process describe above

for this installation is fairly reliable.

Students' behaviour changes during these first lessons: at

the beginning they have a very school behaviour, questions are

mainly adressed to the teacher, they are mainly asking for a

definition, a detail, and answers too are adressed to the teacher.

After some weeks of practice, they propose conjectures,

counter-examples, and some kind of proofs. In some situations they

are able to build, within a debate, some collective proof, through

conjectures, refutations, transforming statements [2).

Some work remain to be done about this installation process:

we'll look here at two questions.

-First we still have to study, in a more accurate way, through

what evolution the students "coutume" changes from the previous one

to the "codidactic" one. Our hypothesis is that this evolution is

produced by the negotiation of successive "contracts", each of

short time (a lesson or less), between the teacher and Ahe

students. These successive .contracts are not necessarily totally
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explicit., nor their negotiation is , so the term of contract is in
some sense not very good , but it describes the rules and

expectations in use in a collectivity, such as an amphitheatre
during a math lesson, as regards the treatment of a definite

problem about a definite knowledge. It describes, like the concept

of "coutume" some basis of the social interactions in a

classroom.[6][7].

- Second we have to carry on the reflection about the following

problem: what part of the new "ooutume" have to be made clear, and

what part not (probably we have to consider the step of the

installation process). The problem is that , in some sense, too

much expliciting may have some bad consequences of the same kind as

those described about proof in the first part, and that we call

"contract-effects": to give a proof for the teacher and not because

it's a necessary scientific step. Here, to debate, to formulate

conjecture for the teacher: students must, in order to build their

own knowledge, live some situation-problem in which there is no

indication about the. didactic intentions of the teacher as regards
this knowledge (devolution of problems in a-didactic situations

[7]).
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THE CONSTRUCTION OF ARITHMETIC STRUCTURES BY A GROUP OF THREE
CHILDREN ACROSS THREE TASKS

Alice Alston and.Carolyn A. Maher
Rutgers University

The problem solving behavior of a group, of
three seventh grade children who participated
in a five session teaching experiment within a
classroom setting is described. The children
were given three problem tasks using concrete,
nonnumerical embodiments and asked to
construct solutions containing common
structural elements. Analysis of the problem
strategies revealed successful constructions
of solutions, recognition of the meaning of the
various structures, understanding of the
relatedness among representations, and
generalization to numerical representations.
Contributions and challenges from individuals
toward the group activity seemed to facilitate
the process.

THEORETICAL FRAMEWORK

Jeeves and Greer (1983) emphasize the importance of
developing in children an awareness of the structural
relationships in the mathematics that they are using and an
ability to recognize structural similarities in situations
that appear on the surface to be different. Morris Kline
(1974). advocates children's involvement in creating
mathematics and proposes that new subject matter be approached
through intuitive experiences that could be represented by
physical arguments. He contends that children best gain this
understanding when mathematics is developed constructively and
not deductively.

Resnick and Ford (1981) indicate that research decisions
concerning the effectiveness of structural approaches to
children's learning must be based on careful consideration of
their implementation in classroom situations. They conclude
that this evaluation should be based on precise definition of
the mathematical structures to be taught and clear criteria
for recognizing what the children come to understand.

Noddings (1985) provides a rationale for the effectiveness of
children working in small groups citing the benefits of their
encounters of challenges and disbeliefs of peers, the sharing
of knowledge, and the provision of responsibility to take
charge of their own learning. Previous research of small group
problem solving activities indicates that learning does occur
for individual members of the group and analysis of the
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interactions within the group provides rich data for
consideration of the process of children's problem solving and
their construction of understanding of particular mathematical
structures (Alston and Maher, 1984; Maher, Alston, & O'Brien,
1986) .

OBJECTIVES

Specific objectives of this investigation were to describe how

a particular grout of children worked together to solve three
problem tasks designed to use a variety of concrete
nonnumerical embodiments to construct models of the structure

of certain properties of a binary operation on a set of
elements: namely, closure, commutativity, identity and inverse
elements. The problem solving behaviors that were studi'd
were: (1) construction of solutions based on the
representation of the concrete models and/or monitored and
revised on the basis of conceptual knowledge; (2) recognition
of similarities and/or differences among the tasks; (3)

generalizations to numerical representations and (4)
individual contributions/challenges to the group problem
solving process.

METHODS AND PROCEDURES

Five 45 minute sessions of a seventh grade mathematics class
in an independent school were devoted to providing 12 and 13
year old children with an opportunity to construct solutions
to three concrete nonnumerical problem tasks (DOLLS TASK,
PROBLEM WITH CARDS, AND ROADS TASK) dealing with the structure
of the properties of closure, commutativity, identity and
inverse. Each of five groups in the class was composed of two
or three children chosen by their teacher on the basis of
similarity in ability and potential compatibility for working
together. Two girls (Tricia and Natasha) and one boy (Ed) who
are described in this paper were members of the same
mathematics class throughout the year and had been accustomed
as a part of regular instruction to working in small groups to
solve problems.

The classroom teacher arranged the children into groups
explaining that this would be the class context for the
activities. A script for each of the problem tasks in turn was
given to each of the children along with two sets of the
objects appropriate to the task. The children were instructed
by the teacher to chose one person to act as official recorder
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and to have some agreement on the responses recorded. Each

child, however, was asked to complete a problem script with

his or her own ideas about the solution which might be
different. A final section on each task required the children

to reflect on the problem solving and asked (1) what they
liked and disliked about it, and (2) what other problems or

ideas, if any, were called to mind.

The directions concerning each operation were written as a

part of the script and the children were asked to demonstrate

understanding of the operation. The teacher's role was to

respond to questions should clarification of the meaning of

each operation be necessary rather than intervening in the

children's construction of solutions. The children were
permitted as much time as required to complete each problem

task and were instructed to return the sheets as each problem

was completed before receiving the next set.

Each of the five sessions was videotaped and transcripts of

segments of the tapes were obtained by independent viewing by

three graduate students. These transcripts along with

observers' notes and children's work sheets provided data for

the analysis.
THE PROBLEM TASKS

The Dolls Task: Adapted as a group problem solving activity

from a clinical interview task to assess students'
understanding of the properties of an abelian group,:children

are given a pair of small figures, boy and girl. The elements

of the set are the rotations of these two figures taken

together from a facing front position, defined as "Both Turn";
"Only Boy Turn", "Only Girl Turn", and "Nobody Turn". The

operation on the set is introduced as one rotation followed by

a second without returning to the facing front position and

the result is the single rotation from -a facing front position
that would leave the figures in the same final position. The

children are first asked to complete a four by four table for

the set with the operation and then asked a series of

questions about closure, the existence of an identity element
and inverse elements, and commutativity of the operation

within the set.

The Problem with Cards: A set of five cards, each with a

different polygonal shape cut out constitute the elements of

the set with the operation defined as putting one card on top
of another and the result being the hole formed by the two
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cards. The first part directs the children to use four of the
cards and to complete a four by four table for the set with
the defined operation. These four cards form a lattice
structure that is closed under the operation. The children
then are asked to consider a series of questions about
closure, the existence of identity and inverse elements, and
commutativity within this set. The second part is similar to
the first except that a fifth card is introduced and a five by
five table is to be completed. However, this set is not closed
under the operation.

The Roads Task: This problem task has a script parallel to
that described in the Dolls Task but has a cyclic group
structure. The members of the set, introduced to the children
as Road Cards, are index cards each having lines from four
equally spaced beginning points on the left side to
corresponding end points on the right. The operation is
introduced as one Road Card followed by a second and the
result for each pair of Road Cards is the single card having
the same beginning and end points for its "Roads" as the
beginning points of the first card followed by the final end
point reached by tracing along the lines from the first card
to the second.

RESULTS

All three of the children successfully completed the chart in
each of the problem tasks. Each also responded correctly to
the questions concerning closure, successfully explaining
under which conditions there would always be a solution within
the given set.

The children consistently used the physical objects to model
the operation in order to solve this part of each problem.
Interaction and discussion among the children regularly
occurred as they demonstrated their understanding to each
other and challenged each other in their thinking. In each
case, before agreeing about the completed chart, each child,
using the concrete representation and asking for clarification
when necessary, either from one of the other two or an
observer, went through each possible combination.

When asked to give reasons about closure, certain comments
suggested generalization of the specific understanding. For
exaample, Ed, in defending his explanation of the dolls said
that there is always a command that describes the final
position because: "no matter what way they face we already
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have a command for it ... those are the only commands. ...

Yesterday we did a number system that had other numbers, so
they could have resulted in something else, but it didn't. In
this case we don't even have any other so it couldn't even if
we wanted it to ".

In filling out the second chart for the "Problem with Cards",
Tricia began to say that Card B over Card E results in "1/2 of-
Card C". Ed challenged her that this would not do because "1/2
of C is not one of the shapes". After all three of the
children discussed the issue and reread the original
instructions there was agreement that "NONE" had to be the
entry into the chart.

It was even more necessary for the children to individually
perform each combination of Road Cards in order to understand
and complete the operation table for the third problem.
However, in responding to the questions on closure for this
problem, Natasha argued that her conclusions to each question
could be explained by the chart rather than describing the
cards.'

The children were also successful in responding to the
questions about identity and inverse elements within the three
problems. In each case,' their explanation of why the special
command or card was chosen had to do with describing it
physically and demonstrating. Tricia showed the other two by
using the dolls that Nobody Turns would leave the first
position unchanged. In the second problem, her written
explanation for the special card as D stated: "Because D is
just an empty void - whatever card is on top will cover much
of D's space and will not cover the part of D that is needed
to make the 1st card's shape"..

Although the children immediately said that the first two
problems were alike, no comparison was made between the
special card D and the command Nobody Turns. However, in Ed's
discussion while figuring out the operation on the Road Cards,
he immediately said: "A is the Special Card". Natasha, in
explaining A as the special card parallelled her description
of Nobody Turns: "Because A is only straight lines and when
you add it to another it will result in that card".

In choosing inverse elements, several strategies were used. In
filling out the chart for the first problem, the following
exchange occurred:
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Tricia:'"Only Boy Turns and Only Boy Turns. Same as Nobody
Turns."
Ed: "Wait - these are all going to be Nobody Turns".

The selection of partner commands for this problem was quickly
accomplished. However, in the discussion about an explanation
Ed tried to generalize. He first stated: "Any pair of commands
cancel out leaving the dolls at Nobody Turns". When Tricia was
not satisfied he compared the operation to multiplication of
fractions: "1/2 time 2/1. They cancel out." From this point
he continued to compare the operation on pairs of inverse
elements to fractions.

The three agreed that this was not the case for the Problem
with Cards. Their explanation was based on the fact that the
Special Card D had the largest opening. Natasha wrote:
"Because C is so small that when you place it on top of
anything C will always cover some space, so it will never be
completely empty" to form D.

In the Road Card Problem, however, all three initially said
that each card was its own inverse even though they had
already successfully completed the chart. Ed appeared confused
in approaching this question, first assuming that it was a
restatement of the question of identity. Tricia reread the
question and then said: "Let's look at the chart. C followed
by C is A". Ed responded: "I know but it doesn't make sense".
To which Tricia responded by demonstrating with the cards. Ed
agreed and then generalized: "Because-two of any card give
straight lines". He entered the four cards as their own
partners then looked at the chart and corrected himself: "It's
just A and A and C and C. Not all of the cards work like
that". The three agreed and corrected their papers.

The students had a general discussion during the Eirst problem
describing the patterns in the chart. They described the
symmetry of the table but did not refer to this in answering
questions about order. In the first problem the three seemed
to misunderstand the general question about order, assuming
still that it is referred to pairs of inverse elements. Early
in the Problem with Cards, however, Ed commented that the
operation was commutative. The other two agreed and used this
as a reason to justify all of the questions dealing with
order. Similarly, after completing the chart for the Road

Cards, Ed stated again that the operation was commutative and
used this *knowledge to explain the question of order for the
identity element.
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The questions asking for explanations about which they had to

agree led to increasingly articulate descriptions of what was

happening in each operation. The variety of representations in
which these properties were considered seemed as Ed said: "to
show us to look at problems from a different point of view".
They stated that the most important understanding in solving
the problems was understanding the commutative property and
likened these problems to addition, multiplication and
reciprocals of fractions.

The value of the same group of children working together over
a period of time seemed particularly evident in following

Natasha, who was the least assertive of the three. During the
first problem task, although she participated by following
along, using the figures and responding in writing to each
question, Natasha did not take an active part in discussion.
Increasingly, during the other two tasks, she became more
involved and was central to the discussion on the Road Card
problem,oshowing the others that the chart was key to
understanding the identity and inverse relationships.

CONCLUSIONS AND IMPLICATIONS

The investigation provided an analysis of the mathematical
interaction among three children working over a five day

period in a regular classroom setting on a series of
non-routine mathematical tasks. Findings suggest that the
activities provided an opportunity for the children to build
cognitive structures by their actions on the objects that were
provided. Understanding of the concepts inherent in the tasks

was enhanced by the group problem solving activities. There
were various strategies used by the children in constructing

solutions to the task. Further analysis is required to
determine the nature and extent of the interaction among
members of other groups who participated in the activities.

That there was no direct teaching during this period suggests
that it is possible to design learning activities for 12 and
13 year old children that promote the construction of multiple

representations of mathematical ideas. Further work is needed
in considering problem tasks appropriate for a variety of
mathematical concepts and a range of cognitive abilities of
children. The appropriateness of these activities as a regular
part of instruction deserves serious consideration for those
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who are challenged to consider constructivist approaches to
teaching and learning.
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CAREER CHOICE ,GENDER AND ATTRIBUTION PATTERNS OF SUCCESS AND
FAILURE IN MATHEMATICS,

Miriam Amit
Department Of Mathematics, Ben-Gurion. University ISRAEL.

Self image and confidence in personal ability in
mathematics, as shown in the causes one attributes to
their successes and failures in high school mathematics,
may affect one's future behavior. This study examined
whether there is a connection between attribution
patterns, gender and career choice:.
First year university students (135 females, 166 males),
belonging to five career curricula which demand different
amounts of mathematics, were given the "Math Attribution
Scale".
Results indicated that : 1) In the population as a whole,
females attributed their success in mathematics to
occasional and external factors such as effort extended
or nature of task, while males attributed their success
in mathematics to a constant and internal factor such as
personal ability. 2) Within a career curriculum student
regardless of gender, attributed the same causes for
their successes and failures in mathematics. 3) Between
the different career curricula, significant differences
were found in all varibles of causal attribution of
performance in mathematics. These results are highly,
correlated with the amount of mathematics requiered in
each career choice.

Introduction :

Research on gender differences in highschool mathematics has
indicated that the relative percent of females choosing to study
advanced mathematics is significantly lower.than that for males
(Carpenter 1983, Cockroft 1982). In Israel about 27% of high
school males choose to study high level courses in mathematics,
while for females only 12% study at this level. (Israel Central
Bureau of Statistics, 1985).
Reasons for the differences mentioned above are :

1. Families' and peer groups' perception; mathematics is
considered as a male domain. Women do not intend to choose
careers in science_ and technology, and therefore they find no
need for higher ,lev61 mathematics.(Fox 1976, Armstrong, Price
1982).

Females more then. males, suffer from "Math anxiety. This
anxiety is seen as a major factor for the reduced rate of
females in higher level mathematics (Tobias 1978).

3. Females have a low "self'image" and lack of confidence in
their personal ability to handle mathematics. This is not to say
that male do .not experience such feelings. They do but, females
attribute their short comings to different factors than do
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males. High school females attribute their success in
mathematics to unstable or external causes: (I'm successful in
mathematics because of good learning environment, easy tasks,
effort extended etc.).While their failures in mathematics are
attributed to internal and stable factors, such as the lack of
personal "mathematical" ability. Males, on the other hand,
attribute their success in mathematics to personal ability and
attribute their failurs to external and occasional factors.
(Wolleat et al 1980, Amit & Movshovitz 1987).
Causal Attribution Theory (Weiner, 1974), states that causes for
success and failure in performance can be attributed to: 1.

personal ability 2. nature of task. 3. effort extended. 4. luck
or environment. These attributions are considered as being
external or internal, stable or unstable, as shown in the
following table.

Causes Internal External

Stable Ability Task

Unstable Effort Environment

According to Causal Attribution Theory, a person's perception of
their own success and failure, influences their future behavior.
For example, one who attributes his successes or failures in
mathematics to an internal and stable factor, such as ability,
expects this success or failure pattern to repeat itself-in the
future. But it seems reasonable to assume that one who
attributes his performance in mathematics to external and
occasional factors, believes that these patterns of performance
are not necessarily repeated. Moreover, it can be assumed that
if a person attributes his successes to internal and stable
factors, and his failures to unstable and external factors, then
this person may have a high and positive self image about his
mathematics ability. On the other hand, if a person attributes
failure to internal and stable factors, and success to external
and unstable factors, it seems that the person has a low self
image in his mathematical ability.

This study examines whether or not Causal Attribution
Theory applies at the university level, 'where students have
already made career' choices which require different amounts of
mathematics.

Objectives

The research questions for the study were:

1. Are there gender differences within the university population
as a whole in one's perception of their successes and failures
from high school mathematics.(In Israel one starts university 3
to 6 years after graduation from high school).
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2. Within a particular career choice, are there gender

differences in one's perception of their successes and failures
from high school mathematics.

3. Are students in different career curricula different in their
perception of their successes and failures from high school

mathematics.

Research design, population and instrument :

301 first year university students (135 females, 160 males),
ages 21-25, belonging to five different career curicula.

Humanities (27 f. 22 m.), Education (32 f.), Biology (37 f. 37

m.),Technology (27 f. 47 m.), Math/Physics (18 f. 60 m.), were
given the "Math Attribution Scale" questionare. This scale,

based upon C.A.Theory, was developed and tested for reliability
and validity by Fennena et al (1979) and adapted by Amit et al
(1987). This instrument has been used in previous research
studies (mentioned above) and seems to be the best measure
available for assesing causal attribution characteristics in
mathematics.
From analyzing and scoring the questionnaire, eight attribution
patterns evolve:

5. failure, ability.
6. failure, effort.
7. failure, task.
8. failure; envir.

1. success, ability.
2. success, effort.
3. success, task.
4. success, enviroment,

Main results

For each of the eight attribution
patterns and for every student, a mean attribution score was
calculated. (range of scores 4-20).T-tests, used td establish
significant gender differences on the eight attribution
patterns. ANOVA on the factors of attribution patterns, gender
and career curiculum were analyzed.

1. In the population as a.whole, significant gender differences
in percieved causes of success were found . (fig. 1)

As observed, females, more than males, attributed their success
in mathematics to external and unstable causes (e.g. ease.of
task, a supportive ,learninig environment and effort extended).
On the other hand, males significantly more than females,

attributed their successes in mathematics to personal ability,
which is an internal and stable factor.
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Figure 1 : Attribution scores of success and failure in
mathematics. (mean scores, S.D)

Success

Ability:Effort:Task :Envi.

Failure

Ability: Effort : Task ; Envi

femu(e 12.4 :15.1 :15.1 ;16.4 11.3 :15.3 :13.1:11.3 1

3.1 : 2.9 : 2.5 : 2.3 3.6 2.8 : 2.9: 2.9

male 13.3 :13.9 :14.4 :15.1 10.7 115.1 :12.5:11.6
3.3 3.8. ; 2.7 2.9 3.9 : 3.0 : 3.0: 2.9

Sala * * *
p <.05

2. Within the same career curriculum, no gender differences
were found in one's perception of success and failure. In other
words; students; regardless of gender, choosing a common
curriculum, attribute causes for their successes and failures in
the same way.

3. Focusing on the scores between .the different career
curricula, statistically significant differences were found in
all variables of causal attribution. The mean scores attributing
success and failure in mathematics to personal ability is shown
in Figure 2.

Figure 2 : Attribution of success and Failure to personal
ability, in different math related curricula. 1144

)310

attribution
score to
ability

12,9

1 42.1
I

I

I

Humanities

12.7

12

1

1

44.7

10.2

1

5.21
. 1

Education Biology Techn. Math

low.< math related j high.
success failure

As observed in figure 2, the more mathematics demanded, in a
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curriculum, the more students in this track attribut their
success to personal ability. On the other hand, the less
mathematics demanded by the curriculum, the more students
attribut their failures to this internal and stable factor.

Discussion:

The main results show that within a career curriculum, gender
differences in causal attribution of success and failure in
mathematics does not appear. Between different career curricula,
strong differences in causal attribution of success and failure
in mathematics do surface, and are correlated with the amount of
mathematics the career curriculum demands.

The results of this study are supportive of Causal
Attribution Theory; namely, when one attribute their successes
in mathematics to internal factors, there is a high likelihood
of studying a math-related curriculum (Fig. 2, Technology and
Math/Physics). Similarly, when one attribute their failure in
mathematics to internal factors, there is a high likelihood of
not studying a curriculum with high mathematics requirements.
<Fig. 2, Humanities and Education).

Results of this study also support the previous research
with high school populations, which shows significant,
differences between students studying in low demanding and high
demanding mathematics courses. However, in this privious
research, significant gender differences did occur within each
high school course of study. Here, in this research, those
gender differences did not appear within each career curriculum
track. This we attribute to a selection process which is based,
upon self perception of ability and success. In high school
there are some females with high mathematics self-image. They
are the few who choose a mathematics related curriculum in the
university. Moreover, they choose these university curricula
because of their self- image, independent of their high school
grades. (previous research show that males and females are
essentially equal in cognitive achievement).

The importance of this result can not be over stated. This
study showes that attribution patterns which are developed in
high school, are relatively permanent and affect future career
choice. Therefore, high school teachers and counsellors must
take special measures to develop a positive self -image with
their female students, in -order to enable them to pursue math
related careers in the future.
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A CLASSIFICATION OF STUDENTS' ERRORS IN SECONDARY LEVEL ALGEBRA
Gerhard Becker

University of Bremen

Errors made by seventh to ninth graders in classroom tests,
homework, or during lessons, are analyzed and classified ac-
cording to a catalogue of forms of "illegal thinking", based
upon a theoretical model describing problem solving processes
as a sequence of states generated by applying "operators". The
following types of "illegal thinking" are illustrated by examples:
(1) Erroneous application of an operator
(2) Erroneous execution of an operator
(3) Lack of identification or erroneous matching of variables

in the premise of an operator
(4) Incorrect identification of variables in the conclusion .

Information processing approaches are increasingly used to analyze and to
classify students' errors in topic areas of school curriculum. Within a
framework of this kind, a problem or a non-routine task is described by
three components: (1) a starting situation or initial state, defined by the
givens, (9) a final situation or final state to be attained by the problem
solution, (3) a barrier which at the beginning prevents immediate transition
from the initial state to the final state. The transition is described as a
sequence of intermediate states, which can be obtained by applying appropri-
ate operators to transform the preceeding states.
Operators are characterized by a premise and a conclusion; their application
demands to check, whether the premise of the operator fits to the state to
be transformed, and yields the conclusion of.the operator as the subsequent
state, when the variables occurring in both the premise and the conclusion
are replaced by names of suitable objects.
Classroom tasks and problems given to .seventh to ninth graders are mostly
of the "interpolation barrier" type, which means that goal criteria are clear
to the students and the means well-defined (the repertory of means closed);
there might as well be problems with indistinct goal criteria or with an open
repertory of means. (Cf. Doerner, 1979)
In many situations and by different reasons problem solvers use "illegal oper-
ators" instead of making correct use of an operator, for instance they omit
complete checking of the applicability of an operator, or use modified operat-
ors formed by themselves. In his basic model, D. Doerner has established a
catalogue of illegal operators used by university students trying to deduce
theorems in propositional calculus. (Doerner, 1973). This catalogue has to be
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refined when being used in the context of more complex problem types, as
compared with propositional calculus.
There is another difference between the conditions under which Doerner's
university students solved logical problems, and the situation in classroom:
Doerner gave his volunteers a list of "axioms", whereas in classroom stud-
ents will have to use means to be retrieved from their memories. It cannot
be excluded that frequency and distribution of error types depend on situ-
ational components, such as just mentioned; but it turned out that the error
categories of the modified catalogue occurred in quite different topic areas
of school curriculum.
The present context deals with errors made by seventh to ninth graders in
classroom tests, homework or during lessons, in "elementary algebra", i.e.:
linear equations and inequalities, use of binomial formulae, and quadratic
equations. Objects or states, to be transformed by operators, in this special
case are the left sides of equations, when any formula is used in order f.i.
to simplify 'a term, equations or inequalities, when their solution set is de-
termined by applying any transformation rule. Students' errors in this field are
analyzed and classified according to the following list of "illegal operators":
(1) Erroneous application of an operator
(2) Erroneous execution of an operator
(3) Lack of identification or erroneous matching of variables in the premise
of an operator
(4) Incorrect identification of -variables in the conclusion.

The types (1) and (2) correspond to the types (NCON) and (NE)0 in Doerner's
catalogue respectively, which are described as non-consideration of the
c o n d is tions for the application of an operator, and non-consideration
of the application instruction s. Within non-consider-
ation of conditions there has to be made a difference between checking
whether the conditions of an operator fit to a special situation itself, and
whether the user makes a correct matching of the variables occurring in the
premise of an operator to the terms substituted for these variables, i.e.
finding a correct instantiation for the variables of the operator. The same
holds for Doerner's type (NEX), with respect to the conclusion of an operator.
The types (3) and (4) of the present catalogue do not occur in Doerner's list;
as can be seen from the tasks Doerner gave his students, there are only a
few variables at all in these tasks, such that erroneous instantiation actually
can be excluded. But as soon as students have to carry out substitutions for
variables in a formula which is an important partial aspect in algebraic skills-
f.i. when applying binomial formulae or transforming inequalities, the donsis-
tant and correct use of the same term for any variable is crucial. So, in more
complex topics in school curriculum, such as algebra, or even more geometry.
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these two components have to be separated distinctly from one another.
Doerner's catalogue still contains further types of "illegal thinking":
Invention of new illegal operators by analogy transfer (AN)
Invention of new illegal operators by "semantic" considerations (SEM)
Invention of new illegal operators par force (PAR)
Search for external causes for the "unsolvability" of a problem (EXT).
They can be neglected in the present context, because they either are spec-
ific for the situation or the topic area from which Doerner obtains them,
or cannot be sharply separated from (NCON) and (NEX) when used to des-
cribe errors in school algebra.

The examples given below do not make any assumption about whether a mod-
ified operator has been learned instead of a correct one, or whether an oper-
ator correctly retrieved from memory is applied in an erroneous way due to
any reason determined by the special situation. The latter could be made sure,
if the student would be able to give a correct answer when asked for the
transformation he or she just carried out.
Usually it seems to be impossible to ascertain which explanation is conclusive.
Mostly the special situation is not appropriate to investigate the actual root
of the erroneous strategy. But even in situations where it is possible to ask
the proband to explain or to comment the use of a certain transformation,
he or she will answer something like: "I just did it in that way", "Because I
have to solve the equation", "In order to continue", "I did it in the same way
as in the previous example", "Isn't that correct?"
In transferring Doerner's catalogue to any more complex topic area than the
originally used propositional calculus; we have to take into consideration a
fifth type of illegal operator neither enumerated in his list. In principle it.
can be imaginated that illegal operators of the following type are used:
(5) confusing premise and conclusion of an operator.
In fact, this error type can be established in geometrical proof. problems (cf.
Becker, 1986), but in elementary algebra tasks-it was -not yet to-be found. Al-
gebraic transformations are mostly of the equivalence type, such that confus
ing premise and conclusion is of no relevance in the present context. Since
solving inequalities needs the use of transformations in which premise and
conclusion are well separated from one another (f.i. If a(b and. c 0,

then a-c < b-c ), we could expect errors of type (5) to occur. However,
the material available from classroom work is so restricted that there was
no opportunity to find evidence for illegal operators of this type.
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(1) Erroneous application of an operator

This error type is characteriied by neglecting the conditions for the applic-
ation of an operator, i.e. a given combination of symbols is misunderstood in
such a way as if allowing a transformation which actually cannot be carried
out when starting from the given pattern. Thus, the domain of application of
the operator is extended, which is an overgeneralization with respect to the
premise of the operator.
The well-known cases, in which a reduction of a fraction "out of a sum"
takes place, belong to this type, such as

a3 a be a3 + a
b'2 - a - a

1.1

or

1.2
)(...0.

y2

Certain transformations of algebraic terms are based upon properties of the
number 0; we often find erroneous transformations formed by overgeneral-
ization of those properties, consisting in transferring them to other special-
ized numbers, such as 1. The same holds for the converse direction. Corres-
pondingly transfer from addition towards subtraction or multiplication takes
place, and from multiplication to "related" operations including raising to a
power, which leads to formation of illegal operators of type (1).
Erroneous operators of this type are not at all restricted to terms, but occur
in solving equations or inequalities as well, such as in
1.3: The solution set for the following system of equations

0.3 x + 1.3 y 9 = 0
2 x + y = 6

after several intermediate steps, among these
3 y 18 = 0.6 x
3 y 18 = 6 x

is determined as the empty set; the argument for this result was the hint at
the equal coefficients 3 and 18 on the left side in contrast to the dif-
ferent numbers 0.6 and 6 on the right side, with reference to the
same result for the system

ax+by+c= 0
ax+by+c'= 0 for c # c'

A series of errors generated by unsufficient checking of the premise may be
explained by disregarding any convention, which also can be interpreted as
"extending" a convention, among these disregarding of parentheses rules or
rules concerning the order of succession of different operations,' especially
the numerous cases of breaking the distributive law.
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Conventions are disregarded, too, when symbols for an operation are omitted,
or omitted symbols inserted in a faulse way, as was done in
1.4 41(3 3) = (3 4.- 4)($.3) =
The following example can be explained by the influence of verbal labels,
which can be described as "changing twice" with the expectation that both
changes together cancel each other:
1.5 3 x > 1 is regarded as equivalent to x >

1.6 4 x < 9 as equivalent to x <

where the change in the order sign (by multiplying with a negative number)
is thought to be unnecessary, because the negative sign (on the right side) is

omitted simultaneously. The intermediate line is not written down, purposely
and with the explicit explanation, that a correct line is not obtained before
both changes are performed.
"Cancelling each other" is a commonly given argument for transformation
steps having as origin partial terms which actually would cancel each other in
quite another context, f.i. as inverse elements with respect to any operation;
1.7 = 6 a-a + 6-a = aaa
Here the two numeral factors + 6 and 6 are obviously imaginated as cancel-
ling each other (when added), the remaining factors are combined to the
product. Similarly, addition of + 3 is thought to give reasons for the follow-
ing transformation
1.8 3 x > 14 into x > 3 14

which again shows the confusion of addition and multiplication.

(2) Erroneous execution of an operator

This error type consists in modifying the conclusion of an operator instead-
of processing a term according to the correct use of the operator, and thus
extending the domain obtainable by applying the operator. Very often erroneous
modifications of the conclusion of an operator are recognizable as incorrect
generalizations disregarding specific properties of different operations.
For instance

2.1 3.9p2 lips
reveals an extension of the distributive law (pertaining to exponents),
similarly as in

2.2 168 2 1168 6

with different kinds of "comprising" Partial terms: and so do the following:

2.3

2.4

2 (2

63
12

+ 3 x)
2

1

2

+ 2 x =

=

4 1 + 3 x

105 x3 y2
36
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the last example showing the nominators of numeral factors being added. as
usual, the denominators multiplied, as in multiplication of fractions, the ex-
ponents in the variable factors again added.
The next example,

2.5 ibc(- ;-ac)'1abc = icablabc = 2 ab-(- -4-196c)
consists in bringing common 'partial factors in every two factors out of imag-
Mated parentheses: c in the first step, ab in the second step, and again
c in the last step.

The "generalized distributive law" (referring to multiplying two sums in paren-
theses), with the binomial formulae as special cases, gives rise to a variety
of erroneous applications especially of type (2), such as

2.6 (ix 81(ty + 6 xy) = Hxy 48 xy

2.7 (Sr + 4 ps)(4 ps S r) = 16 (p s)2 25 r2 + 40 psr

2.8 2 ' 25 2 4 2(2 1 x y) = ,x _xy- 2.-..-y

2.9 (jv + x2) = (3 + X) (3 + X)

In these examples it is easy to be seen, which correct formula was general-
ized, an in which erroneous way.

(3) Lack of identification or erroneous matching of variables in the premise
of an operator

Committing an error of this type means that a number, a variable, or a com-
bination of both is incorrectly substituted for a variable as part of a formula.
when applying the latter from one step of a transformation to the subsequent
step (usually from the left side of an equation to the right side). Incorrect
substitution generally is incomplete or inconsistent substitution: f.i. if the
same variable occurring in the premise is not constantly substituted by a
special number or by the same variable, or if the product term (5x -3)(5y -3)
is transformed by using a binomial formula, or if the partial terms (summands)
in (5 x 3) (3 S x) in the same order as written down are substituted for
the variables a and b in (a b) ( a b) (thus S x for a, 3 for b, then 3
for a and 5 x for b
In certain cases this matching cannot be carried out before having performed
necessary transformation steps, f.i. when deciding, w he the r a sum is
a quadratic term, such as in

16 b2 + 80 be + 25 c2 = (4b + Sc) 23.1
and

3.2 16 b2 + 80 bc + 25 c2 = (8 b + 5 c)2
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Confusion of doubling with squaring (both is "doing the same twice") often
leads to erroneous instantiation (in the premise), such as in

4 1 1 2 13.3 z
,

256 = '7
2

1,87 1,8'
Errors of this type will have as consequence obviously an error of the
subsequent type.

(4) Incorrect identification of variables in the conclusion.

This error type corresponds to (3). but mismatching takes place in the con-
clusion of the operator. It may pertain to a numerical factor, to a variable
factor, or to a combination of both:

4.1 (4 uw 3 v)(3 v + 4uw) = 16 uw2 9v`

4.2 (tabc c2d)(tabc + ;7,' c2d) = se ab2 ac,d
4.3 (4uw 3v)(3v + 4uw) = 4uw2 3v2

Especially when writing down all intermediate steps referring to this very
matching process, errors of this kind can be well identified, such as in the
following solution of a task, which consists in finding the third summand to
fit to the first two summands, such as to form a quadratic term:

4 y2 6 xy + = ( . . . )2 As a solution there is given

4.4 b2
a2

a
2 a b
b

b
2

in another case

4.5

4 y2

2 y
6 xy = 22y1.5x
1.5 x
3 x2

2 a b 6 xy
b2

I

2 x

Obviously in the two last examples the unspecified labelling "twice the same"
again played a role in causing the erroneous procedure.
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Further problems and investigations
The main purpose of this paper is to demonstrate that the sketched model of
problem solving processes is an appropriate means to systematize and to an-
alyze students' errors in a well-defined topic area, such as elementary al-
gebra; illustrated by examples of the mentioned topic area, the categories
can be established in other topic areas, too. Frequency and distribution of the
different error categories obviously depend on situational components of the
instructional context; it therefore could be a reasonable goal in future work
to characterize special situations by the frequency of the different error
types. Far more important seems to be trying to investigate the influence of
language on the formation of errors, in a double sense: when forming illegal
operators and storing them in memory, and when retrieving correctly formed
operators from memory and using them in an erroneous way.
Up to now, there is not yet enough material to devise a precise design for
investigating these phenomena, the available material stemming from situations
which are too inhomogenious: different classes, different instructional con-
ditions, different kinds of registration.
Quite another direction in which the present work can be continued, is the ped-
agogical aspect, under which the findings to hand could be exploited. In an
apparent way analyzing students' errors can be used to devise instructional
methods in order to help individual students to eliminate deficits, or to design
parts of lessons. Dissolving and phasing the complex course of thinking pro-
cesses, even if hypothetical, may be a suitable help in designing sequences of
steps in instruction.
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TEACHERS' WRITTEN EXPLANATIONS TO PUPILS

ABOUTALGEBRA

Joan Bliss and H. Sakonidis

King's College London. University of London

This study investigates some aspects of the written language used by teachers to explain to

pupils various basic algebraic ideas. The sample consists of 40 student teachers attending a

one year teacher training course in mathematics (18 female and 22 male). The origin of the

research is an ongoing study of how pupils explain in writing to their peers some aspects of

algebra, thus permitting the examination of the relationship betweenpupiLs' writtenlanguage

and their understanding of algebra. The pupil questionnaire was modified for the

student-teachers, using essentially the same content but asking the student-teachers to

imagine explaining in writing the algebraic ideas to pupils. All subjects were given 6

questions. Because of the limited space the results of only 3 questions are reported

however the student-teachers' written language reveals a number of misconceptions in the

areas of factorised product, formula/ equation, and ratio.

INTRODUCTION AND METHOD

Mathematics and specifically algebra is one of the subjects where, because of its nature, the use by

teachers of certain types of linguistic forms could have important implications for children's learning

since the teachers' language might well constitute barriers to understanding. Austin and Howson (1979)

argue:

"Yet the use of words to communicate accurately, and in Thom's sense 'with meaning',

the abstractions of mathematics is a difficult, perhaps impossible task." (p.178)

The language used in teaching algebra is necessarily full of symbolism. However while a greater use of

symbolism could lead to an increase in the pupils' competence to manipulate symbols it could also

simultaneously lead to a decrease in their ability to understand the underlying meanings. Howson (1980)

argues that recent reforms have emphasised both the introduction and the use of new symbols and
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language with the idea that this would enhance understanding and add precision but, he also adds :

"(the language) was used so loosely and erroneously that the position is now worse than it was before."

(p.571). k is, therefore, crucial to assess the extent to which either the technical words or the ordinary

everyday language substituting for these terms help or hinder communication of algebraic ideas in the

classroom.

However, commenting on pupils' language - which to some extent will reflect the teaching - Austin

(1973) suggests that often teachers both cannot cope with and also fail to recognise the validity of

"formulations of ideas which are not expressed in the subject register". The idea for the present study

stemmed from a larger study, presently in progress, that looks at pupils' "writings" about algebra,

where we are examining, through an analysis of pupils' written language, their understanding of the

terminology, the conventions and the 'rules' used in algebra. The questionnaire presents pupils between

the ages of 14 and 16 with 6 to 8 situations, and in each instance fictional pupils are shown as having

some problems with relatively simple algebraic ideas and subjects are asked to imagine explaining, in

writing, a solution that will help the fictional pupils.

It occurred to us that it would be sensible to ask a group of teachers to do the task, and to compare the

responses of both groups. Thus the present study examines, by means of a questionnaire, the written

language of a group of 40 student-teachers, pursuing a Post Graduate Certificate of Education course in

mathematics. The 6 core questions given to pupils were reformulated, using essentially the same content

but asking student-teachers to imagine themselves with the task of explaining in writing different aspects

these algebraic problems to pupils of a specified secondary school year. The task took about hall' an

hour.

At first we had hoped to use for the student-teachers' explanations some of the more general categories,

presently being developed for the pupils' responses so as to make comparison more easily. But the data

from the student-teachers does not lend itself to such a classification. The student-teacher (now referred

to as 'students') study is reported in its own right, and at a later date a comparison of the two studies

will be made. Due to lack of space, the results of only 3 of the 6 questions are presented.

QUESTION I

In this question we are interested in seeing how teachers explain different aspects of algebra, for

example, the meaning of the convention "/" in the expression x/s as used in arithmetic and algebra: and

the role of variables in expressions like x/s or b:c. Students were asked to imagine that they were

explaining to a pupil whether or not the following pairs ofexpressions 'tell us to do the same thing or

differem thirrs i) 3/4 and x/s; 3/4 and b:c; and x/s and b:c.
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A number of students did not answer all three parts: 4, 5 and 10 for parts i, ii and iii respectively; a

second different group of students also did not answer the question but instead gave a general pedagogic

commentary, for example, about the role of the context of the question; there were 4, 5 and 5 students in

the 3 pans respectively. If lack of response can be interpreted as an expression of difficulty then part in

was problematic for more than a third of the students.

Results about judgments: we had expected that in part i) students might state that the two expressions

could 'do similar things' while qualifying in which domain, whereas in parts and we expected that

students would state that the expressions were 'telling us to different things.' Our expectation was

mainly confirmed in first part but none specified domains. However, the responses for parts ii and iii

were more problematic: in pact ii 6 students judged the 2 expressions as 'doing the same thing' and 12

avoided judgment, in part iii) 10 judged them 'as doing the same thing' and 5 avoided judgment.

Turning to explanations, students did not explain why the expressions were doing 'similar or different

things' , but instead described separately each of the two expressions. Explanations had both a form and a

content. First, concerning the form of explanations. it became apparent that students either "explained"

or started an explanation by Away, for example. that is a division"(see Table 1). The content of the

explanations presented two sets of issues: i) the interpretation of x/s, and 3/4 either as fraction or as

division; ii) the nature of students' explanations for ratio.

Table 1: Form of explanations

Total Subtotal Naming Name & Explain Others

Explain
1st 2nd 1st 2nd 1st 2nd 1st 2nd

Part i 40 32 31 1 1 3 3 28 27 8 (4 N.R)

Part ii 40 29 30 6 5 6 12 17 13 10 (5 N.R)

Partiii 40 25 24 7 6 5 8 13 10 15 (ION.R)

N.R. stands for non-response

Table 1 shows that for part i the predominant type of response is that of etplataitgratherthan

stamina, with approximately three-quarters of the students explaining both expressions in terms

of division'. In part ii the response is very different, with the strategy of mating or imatigs

and explaining being used by 12 teachers foi the first expression and by 17 teachers for the

second. Explanations for the first expression were divided equally between division and fraction.

BEST COPY AVAILABLE 1 5 S



142

In part in approximately half the teachers replying used the strategy of Atm* or aamigp<aao

elplaiairgfor both expressions, with an 11:8 ratio of division to fraction explanations for the first

expression.

It could be argued that the expression seen as representing a division does not requiring nemiqj

since pupils have been familiar with this operation since primary school and so the focus is on

explanation. For fractions which are perhaps less familiar the incidence of Bamiqg increases

though not as much as for ratio which could be considered the least well known expression. In

both cases the incidence of erplaaatiaa decreases and this could be interpreted as cam* taking

on the function of explaining in some instances.

Four categories were developed to classify students' explanations of ratio (numbers of responses

are indicated in brackets) : (a) Sufficient or acceptable descriptions of ratio (parts li: 7; 5); (b)

responses in terms of relation of parts to whole, for example, "a ratio is when the whole is divided

into two pans, b and c, and b+c gives the totality or the whole" ( parts ii: 7; 4); (c) inexplicit or

problematic responses, that is, when it was extremely difficult to interpret what the respondent

meant (parts ii: 5; iii: 6); (d) misconceptions ( parts ii: 12; iii: 11) ; Others 9; 14).

There were only very few students in parts ii or iii who gave acceptable or sufficient explanations

of ratio. (7/31 and 5/26). The incidence of what we considered as misconceptions is fairly high

and three examples of those most frequently found are given below:

"Fractions and ratios are interchangeable, here 3/4 can be written as 3:4 and similarly b:c can be

writtenasb/c";

"b:c is another way of writing b/b+c so we must see if we can write 3/4 in another way as b/b +c,

we choose numbers for b and c so that b/b+c is the same thing as 3/4"

when you divide one number by a second number and have a fraction for an answer it means that

there is a ratio between the two numbers, a ratio is shown by the two dots :"

QUESTION 2:

Some words and expressions are used together frequently in algebra, for example, multiply and bnrcte

in : "when you remove the brackets you must multrplyeverything inside the bractet by what is outside

the bracket. By presenting words or expressions in pairs, specific contexts of algebra can be given a

focus. We wanted to see whether or not each pair was identified as belonging to a particular context and

how students explained this. So students were presented with the following five pairs and asked to

explain to pupils why the terms (in each pair) do or do sot go well together" : (a) algebraic expression

- terms; (b) formula - substitute; (c) multiply - bracket; (d) factorise product; (e) equation - formula.
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We examined first the total response to each part of the question which was as follows: a) 87%; b) 85%;

c) 83%; d) 65%; e)68%; so, again , if absence of response could be an indication of difficulty factorire

and prvriac4 and lamb aid twat:ion were more problematic. We then examined whether or not

students thought that the words in each of the pairs could be grouped, and this is shown as a ratio of 'for

/'against' grouping as follows: (a) 32 : 3; (b) 28: 6; (c) 18 : 15; (d) 20 : 6; ( e) 22 : 5. So the

majority of students perceived four of the five pairs as being able to be grouped together. Only the terms

multiply- brach% were perceived as not having an easily recognisable common context with only just

over half the respondents stating that they do go well together.

Students' explanations were classified in terms of their clarity and acceptability, or their problematic

nature and this for the two judgments relating to whether or not the terms could be grouped. For the

two judgments the ratios of clear to problematic are as follows :

"go well" (2)28:4; (b)25: 3 ; (c) 14:4; (d) 16 :4;. (e)16:6

"don't go well" (a) 1: 2; ( b) 2 : 4 ; ( c) 12 : 3; (d) 3 : 3; (e) 1 : 4.

It can be seen that on the whole students do not experience too much difficulty in explaining their ideas

about algebraic apression/terras and formula/ subsatuw, although it is harder to explain why they

should not be grouped than why they should. The difficulty increases for the next two sets of words

when it comes to putting tams together; in terms of not grouping these same words, students find

multiply- banter relatively easy to explain but they have more difficulty with Isercrisepnwfoct The

pair equabaa - formula presents the greatest difficulty of all the five pairs as described below. We will

now give the most frequent explanation for grouping terms and also examples of problematic

explanations.

Algebraic exprestioa - tent's: the majority of explanations were in terms of Part/whole, that is,

"the two words go well together because algebraic expressions are made up of terms". In the .

problematic responses a number of student-teachers expressed an interesting view of a term when they

wrote : "a term is one group of letters or numbers that does not contain an "operator" sign as + x I ".

Fotusula - substitute : there were essentially two types of 'explanations first, pazt/whole

explanations for example, "in a formula you substitute values for letters"; second, means/end

explanations, for example "you are substituting into a formula in order to obtain a solution" An example

of a problematic explanation is: "the expreision is made up of letters".

Factorise - prvilecr the category of explanation that predominates is that of the 'opposites sides of

the coin' argument, for example, "to factorise you break a product down and to find the product we

multiply the 2 factors, so they are the opposite sides of the coin" . Examples of problematic arguments
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are :"faaorisation of an equation quite often involves factorising into products"; and "product implies

multiplication,whereasfactoriseimpliessimplification".

For the words ArteliiX7-brsatet there are two different sets ofreasons to justify: a) that terms could

be grouped and b) that they could not. In category a) all students gave as their reason: "when you have a

bracket in a statement you have to multiply what is outside by what is inside". In category b) students
considered that a bracket can be used for grouping any terms. There were a number of problematic
arguments of the kind: for a) "they have a similar operative value'; and for bymultiplication is an
arithmetic operation whereas a bracketis an algebraic operation" .

The terms egestias-faninda present a situation somewhat different from the four othersdescribed

above. Whereas with all the other explanations a distinction could be made between problematic

explanations and those that were clear and acceptable, such a distinction is harder to make in the present

case. Many of the explanations that were clear were also questionable, thus the most frequent and most
explicit explanation was of the kind that a formula was really the same as an equation: "Basically they

mean the same thing because formulas are equations". There was also a number of other explanations

that could be grouped as problematic in as much as it was extremely difficult to interpret the meaning of
the written response as in the following examples:"An equation usually consists of a formula"; "both

express something in terms of something else". We ourselves think that most of explanations of these

two terms, clear or not, were somewhat problematic.

Up to now we have looked at bow students imagined explaining in writing an algebraic idea to pupils.
In the next question we ask students to criticise three different formulae for the area of a rectangle but

this is done indirectly by examining the formulations of three imaginary pupils.

QUESTION 3

The purpose of this question was to examine the criteria students used for the choice of the roost
heiptii/and least helpful among three explanations given by pupils who were asked to write down a

formula for the area of a rectangle of any width and length. The three formulations were as follows: (1)

Area = width x length; (2) If a stands for the width, and b stands for the length, then theformula is :

axb; (3) If A stands for the area, and a stands for the width, and b stands for the length, then the
formula is: A = axb.

We were able to categorise the students' explanations for their choices into three major categories: (a)
Symbolism: the response refers to variables, ways of symbolising quantities, etc. for example, "it does

not involve substituting letter for quantities ", (b) Pragmatism: the response refers to the efficiency ofthe
formula, that is, how easy it is to remember or to work With, for example, "simple, easy to understand,
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no algebra': (c) Pedagogic: the reasons have to do with pupils' ability to understand, or to the teaching

process. for example, "depends on the level of the pupil, everyone is different".

Most helpful response: Type 1 response was chosen by the majority of students (32 / 40) with about

half reasons being pragmatic, thatis, the statement: area width x length, is simpler, easier to remember,

or entails no algebra. About a third of the explanations were about symbolism. Examples of reasons in

the symbolic category which provide us with students' views of problems associated with symbolism are

as follows: "This (type 1) is the best because no "a's" "b's" are introduced which may confusethe child

- if they learn it as A= a x b", what happens when a rectanglehas lengths x and y? "; (typel) "because

it doesn't involve the substitution of letters for quantities"; (typel )" it doesn't introduce any superfluous

terms, tells rather how we calculate area directly. We don't have to relate a number to a letter, rather

everything is solid and practical."

2 students chose type 2 and 3 students type 3, and the reasons for their choice were essentially either

pedagogic or pragmatic (4 / 5). There were 3 students who made no choice but simply formulated

statements of ageneralpedagogicnature.

The least helpful response: The choice divides roughly equally between type 2 (16 / 33) and type

3 (17 / 33), with one pupil choosing type 1 and 6 making no choice but again making statements about the

pedagogic or pragmatic nature of the situation. Although symbolic and pragmatic reasons are the two

most frequent categories for both choices, pragmatic reasons are more frequent than symbolic reasons for

type 2 (9:5) whereas for type 3 they divide equally (7:7) It was noticeable that although both types 2 and

3 were chosen as the least helpful, students did not reject type 2 as an inappropriately formed statement

but rather as a rather irrelevant type of formulation in terms of coping with the situation, for instance.

"Me choice of the letters is irrelevant" , "it should choose W, L and A "; "what is the a and the b?"; "what

is a x b?".

Again we have chosen a number of reasons from the symbolic categories in order to see how students

view the problems associated with this domain: "3 is probably least helpful at this stage because there are

a lot of variables included (three) and the use of two different forms of the letter (a, A) could cause

confusion; "No.3 is least helpful because it is confusing, it has used abbreviation, i.e. A= a x b".

Conclusions

The results of the analysis of these three questions about pupils' difficulties in algebra gave us through

the students' written language some insight into a number of their possible mis-understandings of the

terminology, conventions and 'rules' used in algebra. In the first question the concept of ratio revealed
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itself as particularly tialICUlt to explain, and quite a few students preferred to stay at the level of naming

this concept rather than explaining it. Also although the domain of reference in the question is algebra

quite a few students referred to the expression "x / s" as a fraction. In the second question the two sets of

pairs: factorise - product, and formula - equation gave rise to the greatest number of difficulties in

students attempts to explain what they had or did not have in common. More particularly, with the terms

formula equation students were unable to appreciate or express the characteristics of each. and treated

them as interchangeable. Lastly the students' choices of the most helpful and least helpful formula for

the area of a rectangle chosen from three different formulae revealed that for the most helpful they chose

one where the algebraic symbolism was minimal and for the least helpful, they rejected one formula not

because it was inappropriately formulated, as was the case, but because it was too complicated. An

appropriate formula for the situation was also rejected with only half these students making any reference

at all to its symbolism. We intend to follow up this study by looking at experienced teachers and

comparing their results with those of the PGCE students, as well as, at the later date, comparing the

results of both groups of teachers with the results of the pupils' study from which this research

originated.
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ALGEBRA - CHOICES IN CURRICULUM DESIGN

An Exploratory Teaching Experiment'.

Alan Bell

Shell Centre for Mathematical Education, Nottingham University

It is generally accepted that students' failures in algebra are extensive,

and of two kinds. First, there are characteristic errors in manipulation,

such as 4(n + 5) = 4n + 5, or (x + 8) /(x + 2) = 8/2, or x - 5 = 7 giving

x = 2; many of these relate to incorrect responses to perceptual cues in

the expressions (Saad, 1960; Carry, Lewis and Bernard, 1980). Secondly,

there are more global conceptual breakdowns, such as the failure to

appreciate the significance of checking the solution of an equation, thus

regarding the performance of the solution process as the aim of the task,

rather than the obtaining of a value of x which makes the equation true

(Lee and Wheeler, 1987). Some research attention has also been focused on

the modes of interpretation of the letter symbol - as object, evaluated as

a number, as specific unknown, generalised number or variable (Kuchemann,

1981).

Further uses of letters, not included in Kuchemann's study are, for

example, those shown in the expression y = ax + b, which denotes a

function, connecting the variables x and y, whose properties are those of

linearity, with scale factor a, and with y = b when x = O. The a and b

here are generally called 'parameters'; they are generalised numbers, but

play a different role from the x and y, which are in a sense 'dummy'

variables, serving merely to enable the function to be expressed. There

are also uses of letters in geometry; y = ax + b could itself describe a

line, (of gradient a and intercept b) in coordinate geometry. And in the

geometry of transformations, considering the symmetries of a rectangle we

may write r = hv, where the letters denote particular transformations,

(analogous to particular numbers). But unknowns and generalised numbers

can also appear, as in "vx = hrhv, what is x?" and "xy = yx, where x, y are

any of r, h, v".

The question arises whether the algebra curriculum should be structured

according to types of manipulation, as is traditional, or according to modes
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of use of the letter, or by modes of algebraic activity, such as

generalising, equation-forming and solving, and so on.

One recently published course (to which Kuchemann and Harper have

contributed) adopts the second of these following uses of the letter. In

this, the algebraic content for the first two years (ages 11 and 12) begins

simply by getting the students to use a letter for a temporarily unknown

number, which is then immediately to be calculated. Generalised numbers

appear in the form of simple expressions for drawing zigzags, spirals and

sets of rectangles eg, sets of rectangles with length and breadth 2k, k +

2; values are to be given to k and the set of rectangles drawn. Another

set includes some of type 2k, k + k which are to be picked out as forming

squares (NMP, 1987).

Our view is that the curriculum should be designed to ensure that the

whole range of uses of letters (and indeed of other symbolisms too) should

be covered, but that the structuring should be on the basis of types of

situation which give rise to distinct modes of use of algebra. Just as in

language learning, separate attention may be devoted to descriptive,

expressive and persuasive forms of writing (and others), so in mathematics

there is a whole complex of procedures appropriate to different types of

algebraic situation. We distinguish in this way:

1) Generalising (mainly in number situations).

2) Situations leading to forming, solving and interpreting equations.

3) Functions and formulae.

As well as these types of situation in which algebra arises, we need to

focus attention at appropriate points on

4) General number properties, including their manifestation as rules

for manipulating expressions.

The mode of learning activity is an important feature of this course; it is

to explore a chosen situation containing a number of variations, and to

provide forthe making up, solving and checking of problems by the students

within this framework.
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SITUATIONS USED

We shall describe. the use of Generalising in Number Situations with an able

group of 14year olds; and of Forming and Solving Equations with a middling

but above average group, also aged 14.

GENERALISING IN NUMBER SITUATIONS

This material consisted of two situations, Consecutive Numbers and Patterns

in the Number Square. The first involved recognising that the sum of three

consecutive numbers is divisible by 3, and extending this to 4, 5, 6, ...

numbers, eventually generalising to any number of consecutive numbers. The

method of denoting the numbers by n, n + 1, etc was introduced by the

teacher, and readily picked up and used. However, the resulting

expressions 3n + 3, 4n + 6, 5n + 10, etc were generally not read as

implying divisibility by 3, by 2 but not 4, by 5, etc, but regarded as the

end point of the task themselves, or else used to spot further patterns by

differencing.

3 6 10

3 4

The distributive law 3n + 3 = 3(n + 1) was shown, and accepted, but not

much used by the pupils.

In the second situation, a 3 x 3 box was chosen in the number square, and

the opposite corner numbers

added to give the same sum: 17

\17

27

37

+ 39

18

28

38

= 19

19

29

39

+ 37; this was expressed

x + (x + 22) = 2x + 22 compared with'(x + 2) + (x + 20) = 2x + 22.

The class were asked, working in groups of three, to find other such

patterns in this square, and in the addition and multiplication squares.
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A variety of these were found, and the'significance of the use of the x as

guaranteeing the generality of the result, across all possible positions of

the box within the square, was generally appreciated. However, none of the

class ventured into the more difficult multiplication squa're. In an

operational situation, as distinct from a short exploratory experiment, it

would be important to include this and other more varied cases, as the

assignment of x (and y) to denote the number in a general cell takes

different forms, and the development of this experience is an important

teaching objective.

FORMING AND SOLVING EQUATIONS

This began with the following problems.

1. There are two piles of stones. The second has 19 more stones than
the first. There are 133 stones altogether. Find the number in
each pile.

2. This time the first pile has seven times as many stones as the
second; there are 40 altogether.

3. 3 piles; the first has 5 less than the third, and the second has
15 more than the third. There are 31 altogether.

Students were asked to solve the first two problems, no method being

specified. They did so, by trial, about half getting the correct answer to

the first, the remainder halving the 133 before subtracting 19. They were

then shown how to solve the same problem using algebra. The number in the

first pile.was denoted by x and the equation x + x + 19 = 133 formed and

solved to give x = 57, and the numbers in the two piles 57 and 76, which

were checked to add to 133. They were then asked to solve the same

problem, but using x for the second pile; thus obtaining a different

equation, the solution x = 76, but the same numbers for the two piles.

Following this they were asked to work, in groups of three, at solving the

third question, taking in turn each of the three piles as x; and to compare

their results. On the following"day each group was asked to make up and
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solve 3 similar problems, two easy and one hard, to be attempted by another

group.

This led to a lot of insight into the way different x-assignments affected

the expressions, turning + into and multiples into fractions. It also

led to an unexpected degree of richness in the problem statements. As well

as four bean bags and the number of pupils in three rival schools we had

"A nuclear scientist must complete 4 experiments to save the world, and

he has 23 days to do them in. The first will take twice as long as the

second ..."

(I had originally wished to replace 'piles of stones' by a more exciting

basic situation, but had been unable to think of a similarly flexible one;

I needn't have worried).

CONCLUSIONS

In this last situation, the letters introduced were clearly 'specific

unknowns'. But, as in Generalising, the main difficulties lay in

expressing relations such as 'pile 3 has 15 more stones than pile 2', when

pile 2 was x, making pile 3 'x + 15'; and more so when pile 3 was x,

needing a reversal to make pile 2 'x 15'. '10 less than x +.15' was

another step up in difficulty.

However, although this was observed as a serious obstacle for some studeats-

in the early lessons, on being offered the answer, they soon picked up how

to do it, and in the school examination question on this work, no student

failed to formulate an equation, though there were some 'reversal'

mistakes. It is hard to see any psychological distinction between "if this

unknown number is x, what is 15 more than x" and "x may be any one of a

whole possible set of numbers; but y is always 15 more than x; how do we

write it?".

The most significant difficulty in this equation work concerned the

manipulation of the expressions obtained. For example, three piles

correctly obtained as x, x and x x 2 were added to give 3x x 2; even x, x

and 2x became 3(2x) in one case. This is not an error at the strater,'c

level, but a technical one of not knowing how to combine terms. If
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x + 15 + 2x can be combined to give 3x + 15, why is the above collection

wrong? This involves considering how + and x operations commute and

associate.

Thus, with these classes, the distinction between x as a specific unknown

and x as a generalised number did not appear to relate to conceptual

difficulty. More important, it seemed, was the fact that in both types of

sitution, Generalising and Equation-forming, what was being denoted by the

x was a clearly recognised, almost concrete element of the well understood

situation either the number of stones in that pile, or the corner (or

middle) number in one of those boxes on the number square "like the 17 in

that one".

It is also clear from experience with these situations that there are

'scripts' for dealing with generalising and with equation-use, and these

concen not simply the use of the x, but also the whole procedure, and the

modes of reasoning which are appropriate. In the one case it is forming,

solving, checking solution, and in the other assigning x and forming and

transforming two expressions until they are seen to be the same.

OTHER ASPECTS

Other modes of algebraic activity explored in this experiment included

developing one's skills at manipulating equations, and relating functions

and formulae, in particular 'reading' formulae to recognise the functions

embodied in them (such as in A = L x B, the relation between L and B with A

held constant). Details of these, and discusion of pre-post test results,

may be found in the full report.
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NUMBER NAMING GRAMMARS AND THE CONCEPT OF "10"
Garry Bell

Northern Rivers C.A.E., New South Wales, Australia.

This research investigated the influence of the structure of number
naming systems on children's numerical cognition. Four monolingual
English-speaking (ME) children (mean age 5.8) and four bilingual
Vietnamese/English-speaking (BVE) children (mean age 6.2) in the
same year 1 (first year of formal schooling) class were given 15
weekly individual teaching sessions in numeration and simple
numerical operations. Teaching. sessions were videotaped, and
subsequent analyses used the children's responses to chart the
development of their conceptual structures for "10". It was
hypothesised that the BVE children would evidence both different final
structures and different rates of development from their ME
comparators. Significant differences both between children and
between groups were discerned, some children clearly demonstrating
an ability to reflect upon the grammatical structure of the Standard
Number Word Sequence.

A substantial amount of anecdotal evidence from the Australian teaching
profession points to superior performance on numerical tasks of students of
Oriental descent, and there is strong formal evidence of the same phenomenon
from international settings (Husen, 1967; McKnight et.al., 1987). Some of the
things that these students have in common include high motivation levels,
traditionally structured family backgrounds and a number naming system
which may be described as transparent.

SOME TRANSPARENT NUMBER NAMING SYSTEMS

VIETNAMESE' MANDARIN JAPANESE

1 mot yi ichi
2 hai er ni
3 ba san san
4 bon si shi
5 nam wu go
6 sau liu roku
7 bay qi shichi
8 tam ba hachi
9 chin jui ku
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iv mum sni ju
11 muoi mot shi yi juichi
12 muoi hai shi er juni
13 muoi ba shi san jusan
14 muoi bon shi si jushi
15 muoi nam shi wu jugo
16 muoi sau shi liu juroku

23 hai muoi ba er shi san niju san

37 ba muoi bay san shi qi sanju shichi

The names given to the concept "13" -- "muoi ba', "shi san" and "jusan" --
contain semantic cues which reflect the decimal structure of the modern
counting system. Logic and conventional wisdom about how children learn
seem to suggest that such a number naming system may advantage young
children who use it in operating on numbers. From an information processing
perspective for example, such a system uses fewer "bits" than, say, the
Germanic or Romance languages, so some degree of cognitive economy might be
operative.

There is clear evidence of these cultural differences in tasks of numerical
competence both at higher (Lesser, Fifer and Clark,1965) and lower (Lui
Fan,1981) age levels. In some studies (Ginsburg, 1981; Posner, 1982; Hatano,
1982; Laney, 1983), this differential in numerical performance has been
directly linked with language structures, while in others (Ayabe and Santo,
1972; Kitano, 1974;) an attitudinal explanation has been offered. Although both
Chinese and Japanese subjects have consistently shown significantly higher
competence on numerical tasks (Husen, 1967; Lui Fan, 1981; Stevenson et.al.,
1982,1985; Mcknight et.al., 1987)), and these cultures both use a transparent
number naming system, it may be that this artefact can be explained in terms
of a generally different cognitive (Tsang, 1984) or perceptual (Hsi and Lim,
1977) framework, or even a fundamentally different school curriculum (Easley,
1983).

Certainly, the link between Standard Number Word Sequence structure
and children's early number abilities has not been adequately investigated.
Recent commentary on SNWS development for example, places little
significance on the relationship between the grammatical structure of that
sequence and children's mental representation of number.

" much of the development of the young child's numerical
abilities involves the rote learning of the first 12 or 13 number
words and the generative rules for producing the subsequent
number words." (Gelman and Gallistel, 1978:79)
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-None of tnese authors round evidence mat children understood me
teens structure of the number words at the time they were
acquiring those words. The number word sequence thus seems to
be for young children an unstructured list until twenty (or perhaps
twenty nine), and then the decade structure is evident." (Fuson
et.al., 1983:54)
"...the English SNWS segment that contains all whole number words
from one to twelve must be fixed in the child's memory. After
thirteen a preliminary composition procedure may set in, and after
twenty a general one." (Steffe, von Glasersfeld, Richards and Cobb,
1983:26)
The questions of whether children can become aware of the significance of

the structural aspects of spoken language by reflection, or whether language
can itself structure subconscious thought are still unanswered. There is
evidence, although not from the mathematical register, and more often from
adult subjects, that both phenomena occur. Meyer and Schvaneveldt (1976)
found consistently that a test word which is immediately preceded by a
semantically _related word ("green grass") will be more quickly recognised
than an uriprimed test word. Fischler (1977) argued that semantic relatedness
is the main determinant of facilitation in lexical decisions. Both results seem to
indicate attention to components of the verbal stimulus. Taken further, these
results could perhaps be used to infer that a Vietnamese child who could
quickly recall "ba + bon = bay" (3 + 4 = 7) would employ similar structures to
recall "muoi ba + bon = muoi bay" (13 + 4 = 17).

The central aim of this study then, was to examine the influence of
number naming grammars on children's numerical development. In particular,
it analysed the conceptualisation of "10" in young children from two linguistic
backgrounds which employ either a transparent (Vietnamese) or opaque
(English) number naming system. In doing so, it drew on an experimental and
theoretical framework recently developed by Steffe and his co-workers at the
University of Georgia.

A teaching experiment was undertaken with 5-6 year-old English-
speaking and Vietnamese-speaking children in the period July-November
1985. Initial individual interviews were conducted with 18 children from the
same year 1 (the first year of schooling) class. Tasks were derived from Steffe's
(1983) task sequence, and oriented towards assessing facility with the number
word sequence, both in English and the first language. Following these initial
interviews, 4 monolingual (English) (ME), and 4 bilingual (English and
Vietnamese)(BVE) children were selected from the same class on the basis of
broadly comparable performance on the standard number word sequence in
their fifst language. These children received individual instruction for 15-20
minutes each week for 15 weeks, spread over the period July-November 1985.

173



157

Sessions were videotaped for subsequent analysis, and the overall orientation
of the instructional sessions was towards game activities designed to lead the
child towards the adult model of mathematic.al competence through the
fulfilment of the following objectives indicative of the 'competencies required in
'primary school mathematics:

1. --to foster competence with the SNWS hi English and the first
language;

2. -- to build the conception of the number system as concatenations
of ten.

3. -- to develop the coordination of this sequence with presentations
of countable unit items;

4. -- to consolidate the operational schemes of each child;
Case study analyses focussed on the development of each child's meaning

structures for "10", and these structures were inferred from the video record of
each child's actions (or intentions to act) in problem situations. The predicted
behavioural manifestations of the child's conceptual structure for "10", derived
from Steffe and von Glasersfeld (1983) were as follows:
CONCEPTUAL MANIFESTATIONS OF "10"
1. A SPECIFIED PERCEPTUAL COLLECTION.(SPC) This refers to any
counted collection of 10 perceptual items that cannot be re-presented.
2. A PERCEPTUAL UNIT.(PU) Perceptual collections of 10, which are only
temporarily established in the visual field of the child, and which derive
salience only from the items of the collection and the patterns in which they are
arranged, are abstracted through the ability to re-present counting activity,
which leads to the realisation that any two perceptual collections of 10 will
have a common feature -- if they were counted, "10" would be the result.
3. A COUNTABLE PERCEPTUAL UNIT.(CPU) If a child can coordinate the
Decade Number Word Sequence with specific perc'eptual units which each
contain 10 items, it is said that, for the child, these units are countable.
4. A FIGURAL PATTERN.(CFU) This is a pattern of 10 counted items that can
be re-presented. It may take the form of 2 open hands, or a figural image of a
bundle or base 10 long, or may have idiosyncratic significance. If it is

coordinated with the DNWS it is called a countable figural unit.
5. A COUNTABLE MOTOR UN1T.(CMU) This type occurs in the context of
counting perceptual units of 10 using the DNWS, when a motor act like putting
up a finger or pointing with a finger is used as a substitute for perceptual units
of 10 that are screened from sight.
6. A NUMBER WORD PATTERN.(NWP) If children are capable of re-
presenting and reviewing the results of a counting activity and pulling from it
the recurrent results of making intuitive extensions of 10, they are sometimes
able to construct a number word pattern from a point within a decade, "5, 15,
:5, ", incrementing by implied 10 counts.
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7. A NUMERICAL COMPOSITE UNIT.(NC) This conceptual re-organisation
enables the child to take a perceptual collection of 10 items as 1 unit, while
maintaining its numerosity. This unit refers to any pattern of 10 that is the
result of an integration, the focus being on the elements and the pattern not
being taken as 1 thing.

8. AN ABSTRACT COMPOSITE UNIT.(AC) The ability to coordinate counting
by tens and ones when counting on, is symptomatic of the use of ten as an
abstract unit.
RESULTS AND DISCUSSION

The research hypotheses for the children in the study were:

1. That the BVE children (Hao, Qyen, Ai, and Tony in order of age)
would exhibit some of the described conceptual manifestations
of 10 earlier than the ME children (Kim, Peter, Kylie, Sean).

2. That the ME children would not exhibit any of the described
conceptual manifestations of 10 earlier than the BVE children.

3. That the BVE children would exhibit conceptual manifestations
of 10 not exhibited by the ME children.

4. That the ME children would not exhibit conceptual
manifestations of 10 not also exhibited by BVE children.

HYPOTHESIS 1 was accepted. BVE children Tony, Ai and Hao all evidenced
10 as an Abstract Composite earlier than ME children, and apart from one
exception, the clear tendency was for BVE children to produce 10 as a
Perceptual Unit, 10 as a Countable Perceptual Unit, 10 as a Countable Figural
Unit, 10 as a Countable Motor Unit, and 10 as a Number Word Pattern earlier
than the ME children.

The notable exceptiOn was Kim, an ME child who attained 10 as a
Countable Figural Unit, 10 as a Number Word Pattern and 10 as a Numerical
Composite before any BVE child. She was the youngest of all the subjects, yet
she entered the study with competencies clearly in advance of her comparators.
Her Sequencing by 1 and Decoding routines were observed to be operative from
July, and her Sequencing by 10 routine attained an operative level in session 9,
before any of the other children.

Kim's exceptional performance can be explained in terms of the fact that
she abstracted number before six of the other children. This, coupled with her
early mastery of the English homonymic transformations, enabled her to focus
on the components of a number name, make integrations on each component,
and anticipate the results of extending or contracting each.component.

HYPOTHESIS 2 was rejected. Kim's early use of 10 as a Countable Figural
Unit, 10 as a Number Word Pattern and 10 as a Numerical Composite clearly
showed that. it was possible for an ME child to attain these concepts before BVE
children. Yet, it has already been noted in the discussion of HYPOTHESIS 1 that
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if Kim's perforinance is put aside, there was a clear tendency for BVE children
to attain more complex structures earlier. Certainly the structures attained by
Kylie, Sean and Peter (ME children) were slower to develop than those of the
other children, Peter for example never abstracting 10 as a Countable
Perceptual Unit, and Kylie only attaining it at the last session.

HYPOTHESIS 3 was accepted. Tony, Ai and Hao (BVE Children) all
exhibited 10 as an Abstract Composite -- a structure not exhibited by any ME
child.

HYPOTHESIS 4 was accepted. There were no identifiable structures
exhibited exclusively by ME children.
GENERAL RESULTS

The central aim of this study was to investigate whether children whose
first language employs a transparent number naming system develop
conceptual structures for "10" which are demonstably different from those of
children from an English- speaking background. Demonstrable differences in
both conceptual structure for 10 and rate of development of those structures
were found. Additionally, there were differences in the rate of development of
the Sequencing by 10 routine. These differences were evident both between
children and between BVE and ME groups.
CLASSROOM IMPLICATIONS

This study employed a case study approach, so it would be hazardous to
attempt to extend these results beyond the limits of sampling. It has however
shown that some children appear to be capable of reflecting upon the structure
of verbal utterances and abstracting concepts of numeration as well as
techniques of addition from the information contained in those utterances. In
addition it showed that the structure of the English SNWS with its extensive
reliance on homonymic transformations effectively inhibits the attempts 'of
some children to abstract numeration conventions from the number naming
grammar.

This suggests that it may be appropriate to introduce young European
children' to alternative transparent Number Word Sequences in order to focus
their attention on the isomorphism between the verbal and numeric
representations for number. Such an exposure (say, to Chinese, Japanese,
Vietnamese, Esperanto, or some other, invented system) could be justified not
Only from a multicultural, but also from a cognitive standpoint.

Future research should explore the, usefulness of employing a transparent
number naming system to remediate numeration misconceptions and
algorithmic errors in older children.
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THE KINDERGARTNERS° UNDERSTANDING OF DISCRETE QUANTITY

Jacques C. Bergeron, Universite de Montreal
Nicolas Herscovics, Concordia University

Abstract

When the natural numbers are viewed as the means to
measure discrete quantities, the notion of quantity can
then be considered as a pre-concept of number. This paper
reports the results of a study regarding the kindergartners'
understanding of discrete quantity. Our investigation shows
that three distinct components of understanding can be
found among this age group. All 24 children tested indicated
they had an intuitive understanding as evidenced by their
ability to estimate quantity on the basis of visual
perception. A more advanced level of comprehension , that
of procedural understanding, was evidenced when each
child proved able to use procedures based on one-to-one
correspondences to constructs sets that were larger,
smaller, or equal than a given one. third component of
understanding, that of abstraction, was studied through
various tasks ascertaining the subjects' ability to perceive
the invariance of quantity with respect to various surface
transformations, that is, changes in the disposition of the
objects which did not affect the given quantity.

If one views the natural numbers teleologically, that is in terms of their utilization,
one must take into account both their cardinal function, which enables us to
measure the quantity of objects included in a discrete set (Vergnaud,1979) and
their ordinal function which enables us to determine the rank of an object in an
ordered set. Thus, it can be seen that the concepts of quantity and rank are in a
sense fundamental schemes on which the notion of number can be built. This
distinction leads to a finer discrimination between number, which is a mathematical
construct, and quantity and rank, which are rather physical constructs. The
children's understanding of these physical quantities has often been confused with
their understanding of number as for example in Piaget's classical experiment on
the conservation of "number (Piaget & Szeminska,1941/1967). In fact, since in his
test, subjects are not required to enumerate any of the rows of objects, the notion of
number can hardly be invoked and thus the task should be considered as
pertaining to the conservation of quantity.

- We wish to thank our research assistants Anne Bergeron and Marielle Signori
whose suggestions have improved the quality of both the tasks and the questions.
- Research funded by the Quebec Ministry of Education, FCAR Grant EQ 2923
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This past year we have investigated the kindergartners' understancfing of discrete
quantity and of the notion of rank. We report preliminary results of this ongoing
study in two companion papers. The present one deals with quantity.

In our analysis of the notion of discrete quantity, we have postulated three distinct
components of the child's understanding of this conceptual schema. A first
component which can be viewed as an intuitive understanding of this concept
reflects a type of thinking based essentially on visual perception. At this' level,
children can easily compare two sets and estimate visually who has more and who
has less, or if one has as many as the other; in comparing two sets they often can
determine by mere perception which one has many and which one has few or
litde.

A more advanced level of operation is involved when children can actually use a
rational procedure enabling them to make these judgments about quantity with
reliability and precision. The acquisition of such means can be perceived as
bringing about a higher level of comprehension which we describe as procedural
understanding . The notions of 'more', 'less' and 'as many can all be assessed by
using procedures based on one-to-one correspondences. While still being
non-numerical in the sense that no enumeration is involved, such procedures can
be carried out physically by the children and provide them with an assurance which
they cannot obtain from mere visual estimation.

Still a more advanced level of comprehension is evidenced when the child's
conception of quantity becomes more stable and can resist various surface
transformations. Piagers conservation of quantity is one such example. Young
children believe that after one of two equal rows of objects has been elongated, it
somehow must contain more than the other row. There are many other such
transformations which can test whether or not the concept of quantity is firm enough
in the subjects' mind to overcome the erroneous information they obtain from their
visual perception. This detachment from visual perception leads them to a level of
understanding which we call abstraction. Of course, it does not occur all at once,
and in fact one can usually establish a hierarchy among various tests assessing
the invariance of a given concept with respect to specific transformations.

The present paper describes the many different tasks we have designed to assess
the kindergartners' knowledge of quantity, as well as the exact wording of the
questions. These tasks have been used in semi-standardized interviews with 24
children (average age 5:8) coming from three different schools in Greater Montreal.
The interviews required one session of about 30 minutes with each child. Each
interview was videotaped .

Intuitive understanding

The intuitive understanding of quantity was assessed through two tasks based on
visual estimation. In the first task, the interviewer laid out 25 identical cubes in front
of the subject and 7 cubes in front of herself while asking:
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Here are some cubes for you (25) and here are some for me (7):
(a) Just by looking at them, can you tell me who has more, you or me ?.
(b) Can you tell me who has less, you or me?
(c) Can you tell me where there are many?
(d) Can you tell me where there are few (if needed,not many)? .

All the child-en interviewed answered these questions without hesitation thus
indicating that they could handle these visual estimations with ease. Only two
children did not understand the word "few" but they grasped the meaning of "not
many". Hence even among the youngest children in kindergarten; between the
ages of 5 and 5-1/2, these .subconcepts and the vocabulary associated with quantity
have been acquired.

The second task was aimed at testing the child's visual estimation in the context of
equal sets. Two sets of identical cubes were laid out randomly, one set in front of
the child, and one set in front of 'the interviewer:
(a) Here is set for you and here is a set for me. Just by looking at them,

can you tell me if you have as many as I have? (if needed, the same
as I have)

(b) What would you do to make sure? (and if the child suggests counting)
(c) Do you have another way to make sure, without counting?

Among the 11 younger children in our sample (aged from 5:3 to 5:8) '5 of them
could not estimate visually if the two sets were equal. Among the 13 older children
(aged from 5:9 to 6:2), there were 4 such subjets. There seems to be some difficulty
at the level of vocabulary. In French, the words we use are "En as-tu autant que
moi". Several children do not understand this and we then resort to other
expressions such as "En as-tu pared que moi?" or "En as-tu la meme chose que
moir

The additional questions have proved informative. All except five children
suggested they could make sure that the two sets were equal by counting. This is
clear evidence indcating that the numbers learned by these children have acquired
a very strong cardinal meaning. Only a few of the children could think of other
means of comparison. A couple of children suggested putting the sets in a
one-to-one correspondence and a few others made a rectangular array of 2x4 with
each set of cubes and then indicated that they were the same shape.

Procedural understanding

The tasks were designed to assess if the children could use a one-to-one
correspondence in comparing two quantities. The interviewer aligned eight green
rubes in front of the child and gave him or her 10 red cubes while raising the

following questions:
Here is a row of green cubes, and I'm giving you these red cubes.

(a) Can you make me another row just like mine? The child will usually lay
out the 10 cubes. Do you think that we have as many cubes in one row
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as In the other? How can we make them the same?
(After each task, the child's row is removed)

(b) Would you now like to make a row with more cubes than in this
one?

(c) Can you make a row where there are less cubes than in this one?
(d) Can you make a row where there is one more cube then in this one.

These tasks were aimed not merely at verifying if the child could recognize these
quantified relationships but if the subject could actually use a one-to-one
correspondence to generate these required sets. Using the interviewers row as a
template, all 24 subjects were able to generate an equal set. Only one child failed
to construct a row with more cubes, while two subjects failed to produce one with
fewer elements. Surprisingly, it is the last question which seemed to cause some
difficulty. Six of the 24 children (three in each age group) were unable to generate a
set which contained one more cube than the given row.

Abstraction

As mentioned in the introductory remarks, abstraction refers to that level of
understanding associated with the construction of invariants. Four distinct tasks
have been designed to test the child's perception of the invariance of quantity: with
respect to the visual perception of the elements, with respect to their random
configuration, with respect to the elongation of a row, and the classical Piagetian
conservation task. In the words of Freudenthal (1983,p.84), these tasks ere aimed
at testing the invariance of a set of discrete objects under a chenge of perspective
and under "shake° transformations, that is, resulting from a changed disposition of
the set.

invariance with respect to the visual perception of the elements
Prior research (Anne Bergeron, N.Herscovics, J.C.Bergeron,1986; L.Steffe, E.von
Glasersfeld, J.Richards, P.Cobb,1983) has shown that children experience great
difficulties in counting partially hidden sets. Staffs et al.have coined the expression
'perceptual units" to describe the situation when distinct objects are perceived
by the senses, be they visual, auditory, or motor. Research reported by A.Bergeron
et al. indicates that the visibility of all the objects in a row_ of chips can be a crucial
factor in the child's perception of cardinality. In fact, they reported that with six
chips covered in front of them in a row of 11 , some children only counted the
visible ones when asked thian manly chrip,F. eftagetthez were seed oao n, e
large cercaoenta? Most of those who were asked to count on from 6, continued
to count on to eleven but were unable to say how many chips were on the
cardboard they had just enumerated. The most common procedure used by
children was fisual axon (Steffe et aI.1983) which refers to the child's
enumeration of Emegtated units while pointing with a finger over the hidden part of
the row. In most cases, subjects using this strategy failed to arrive at a correct count
although they all knew the number of chips being hidden. Clearly, the perception of
units was of prime importance in the child's construction of numerical units. Thus
the investigation of perceptual units with regards to quantity, in a non-numerical
context, was of great interest.
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The first task involved a row of 11 chips glued on a cardboard. The child was told:
Here is a large white cardboard tat th chipsglued to it. Lock.i'm cov aring
epartofit.
Now, do you think that there are m are chips than before, lees chips than
before, Of the same amount an bete. re. on the lar white car d ?.

Incase tho child might construe that the three hidden chips should not be taken in
consideration because they were at one extremity, this was followed up with
second task in which three middle chips were hidden. And since the child might not
understand that the whole cercboard vies involved, a third type of situation was
presented. The interviewer aligned l0 chips in front of the child and provided him or
her with another set while asking for another row right next to hers. The subject was
then asked if the two sets were the same:'The 3 chips of they interviewer's row were
covered by a small cardboard and the question was raised whether or not the two
rows still had the same amount of chips:

80000600009 ee AO

The results are quite striking. Only one single child thought that the row with the
cardboard hiding three chips had the same amount as before in the first two tasks,
and that the two final rows in the third task were equal. every other child stated that
the quantity had changed. Thus, the tree tasks produced an extremely consistent
behaviour. Hitting a part of the set in front of the child removed the hidden objects
from their consideration. Many subjects stated this quite openly: 'When you hide the
Chips, it is as if they are not there anymore. It might be argued that this kind of
response is induced. Perhaps the child associates" hiring with some kind of game
and ignoring the hidden part is some kind of make believe behavicr. In view of this
conjecture, we repeated these three tasks in even simpler situations. Of course,
these new tasks were not carried out at the same time as the first ones, but during
the second interview.

The child was presented with two cardboards on which 10 chips were glued. They
were placed next to each other so that the subject could establish through an
obvious one to one correspondence that the same quantity was involved. Both the
child and the interviewer put one such cardboard in a plactic bag, the child's bag
being completely transparent and the interviewer's being partially opaque so as to
hide three chips:

-K7=N7=K:2=1

The subject was then asked:
Now in your bag, do you have the same amount of chips as I have in
my bag?
For the other two tasks involving a singe cardboard, plastic bags were provided,
the opaque part hitting respectively the last three chips and the middle three chips
in the row.

In these last three tasks, the warding of the questions was such that there could
hardy . be any misunderstanding. The 'chips in the bag" could not be taken as
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meaning the "visible chips". The hiding now was no longer, active but incidental.
Thus no hieing game could be inferred. Yet, the responses of the 24 ubjects
changed but little. Only two more children stated that the quantity was the same in
the bag. These results indicate the extent to which the child depends on visual
thinking. Even when touching the hidden objects in the plastic bags, our subjects
stated without any hesitation that there were feciier objects present in them.

invariance with respect to random configuration.
Another set of tasks dealt with the invariance of the quantity of objects with respect

to their random configuration. A set of 9 cubes was disposed randomly before the
child. The interviewer then very carefully, using one finger to spread out the set,
displaced one cube at a time, making sure that the objects were at all times visible
to the child. Prior work had shown that it was important to perform this slowly and
with care for otherwise the subject might believe that through some sleight of hand,
some cubes had been removed or added.The child was then told:
Here are some cubes. Take a good look. I am going to MOM them
around. If I put them like this (spreadng them out) cart you tell me if there
are now more cubes, or less cubes, or the some amount of cubes as
before?
The same pattern of questioning was used later on in the interview to verify the
effect of contraction of a set of randomly &played cubes.

Comparing the responses to both the dispersion and the contraction tasks provides
an indication of the stability of the child's perception of this particular invariance. Of
the 24 subjects in our sample, 13 thought that the quantity had not changed in
either task, while 6 pupils believed that the quantity had changed in both cases.
These two numbers add up to 19 which represents an index of stability of 79%. The,
remaining 6 children (three from each age group), that is 21% of our sample, must
be considered as transitional, since the answers varied in both tasks. three of
them believing 'that the quantity had changed in the expansion but not in the
contraction. These results seem to indicate that the surface covered by the cubes,
that is, the space they occupy, might be a determining factor for those children who
thought that the quantity had changed.

This conjecture could easily be verified with the next two tasks. The first one had the
8 cubes in a paper plate. The 8 cubes were then moved around in the plate.Since
the space occupied did not change, this would verify if the mere act of moving the
cubes would have any effect. We also provided an additional task in which the plate
of cubes was simply rotated in front of the subject.

Results were rather surprising. Questioning the children who thought that quantity
had changed in the dispersion and contraction tasks revealed that nearly all of
them (five out Of six) thought that the quantity had changed when the cubes where
moved around in the paper plate. This indicates that the mere motion of the objects
'without any change in the space occupied can affect the child's perception of

quantity. The rotation of the plate proved somewhat more, successful since four of
these six children stated that it did not affect the quantity. The responses of the
transitional group proved to bemixed. Two of' the five children thought that quantity
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was affected by both the motion within the plate and the rotation of the plate, two
children stated that quantity was not affected in either case, while one child
believed that it was affected in the first case and not in the latter one. As expected,
all the children questioned from among those 13 who old not think that quantity
had varied with dispersion or contraction responded that it did not change in the
last two tasks.

invariance with respect to the elongation of a row
The last two tasks on the invariance of quantity dealt with the visual impact of the
elongation of a row. The first of these involved 11 cubes which were aligned in a
row in front of the child following which, the cubes were then spaced out evenly
resulting in an elongated row. Children were told:
Here is a row of cubes., Lock, Irm going to spread them out. Now
you think that there are more cubes,Oess cubes,or the same as before?
The next task was the classical Piagetian test on the conservation of quantity. The
interviewer laid out a row of 7 cubes and handed out 10 other cubes to the child.
The excess cubes were removed while the child confirmed that there were the
same amount of cubes in both rows. Following this,one of the rows was elongated
and the child was asked: How you think that r ere is one row !ACM
there are more or you think at the two POWs have up,ra CONDO
cacriount of cubes?

Of course, the elongation task proved to be much easier than the Piagetian test. All
the 13 children who perceived the invariance of quantity with respect to (Aspersion,
contraction, displacement, and rotation, also perceived its invariance with respect to
elongation. Of the five children in transition, only one succeeded on the elongation
task; two of the five children who did not perceive the invariance with respect to
dispersion and contraction did succeed. Thus in total, 13 subjects were successful
on this task. On this basis, this invariance is barely more accessible than that due to
dispersion.

The Piagetian test was more difficult since the mere visual perception of the two
rows of different lengths creates a cognitive conflict, the child often believing that
the elongated row must now contain more elements. Ten of our 24 subjects (42%)
were judged to conserve quantity. Eight of these belonged to as 13 students who
had been successful on every prior invariance task except the ones on visual
perception of the units. But surprisingly one student came from the transitional
group and one from the group that cad not perceive the invariance of quantity with
respect to configuration. Another important difference was to be found between the
two age groups: only 3 out of 8 children (27%) in the younger age group conserved
quantity while 7 out of 13 in the older age group (54%) old so too.

By way of conclusion

These research results bring out the fact that the notion of discrete quantity exists in
the child's mind independently of numeration. In fact, the data shows that the
kindergartners' conception of discrete quantity is quite extensive and that they have
non-numerical procedures to deal with many of the related problems. Of course, the
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results also show that the abstraction of quantity, that is, the perception of its
invariance with respect to surface transformations, is an ongoing process. The
various tasks we have designed provide sufficient information to establish a
hierarchy among these different invariances. The following hierarch is based on
the success rate of the above tasks:

Invariance of quantity with respect to

rotation (of plate with cubes)
&placement within same space
elongation of a row
random contraction of a set
random dispersion of a set
comparison of elongated row (Piaget test)
the visual perception of objects (in the bag)
the visual perception of objects (hiring cardboard)

N Percentage

19 79%
17 71%
16 67%
16 67%
15 63%
10 42%
3 13%
1 4%

The information communicated in this paper deals with the notion of discrete
quantity, a pre-numerical concept which is the foundation of cardinality. An equally
important pre-numerical concept is that of the volt an element in an ordered
set. That particular aspect is presented in a companion paper, The
Cringersoriners° understan rag of urge o2 rank, by N. Herscovics and
J.C.Bergeron.

Fiefereacee

BergeronA., Herscovica,M., Bergeron,J.C.,(1986), Counting tasks involving
some hidden elements, in Ft oceedial oil the El Annual Meeting
PUIE-R9&, the North American Chapter of the International Group for the
Psychology of Mathematics Education, Lappan,G. & Even,R. (eds.), East
Lansing, Michigan: Michigan State University, 21-27

Freuden al, It, (1983), Didactical iphenomen ogy (mathematical
structures, Dordrecht: Reidel Publishing

Piaget,J., Szeminska, A., (1941/1967), Le Gesitase du nombre chez
0°Entant, 4t ed., Neuchatel. Suisse: Delachaux et Niestle

Steffe,L.P., von Glasersfeld,E.. !Richard..9., Cobb, P., (1983), Children's
Counting types, New York: Praeger Publishers

Vergnaud, G., (1979), The acquisition of arithmetical concepts, in Educational
Studies in Mathematics, 10, 263-274

BEST COPY 4AiLABLE 18 6



- 17o

A REVIEW OF RESEARCH ON VISUALISATION IN MATHEMATICS EDUCATION

Alan J. Bishop
University of Cambridge
Department of Education

ABSTRACT

The aspect of visualisation in Mathematics education has not
attracted much research attention in the recent past. Nevertheless
it is felt by many Mathematics educators to be important in the
education process. There have been some significant studies which
do have interesting implications for both research and practice, and
this review surveys the current situation. The review is in three
sections, the visualisations themselves, the process of
visualisation, and teaching in relation to visualisation.

1. INTRODUCTION

This review builds on and extends from earlier reviews written
either by the author or by others (Bishop, 1980; Bishop, 1983;
Bishop, 1986; Clements, 1982; Presmeg, 1986b; Mitchelmore, 1976)'but
will be restricted to the notion of "visualisation". This construct
interacts in the research literature with the ideas of imagery,
spatial ability, and intuition, but'it is certainly notthe case
that visualisation has been felt to be a significant research area
in mathematics education in the recent past.: Whilst searching the
literature in preparation for this review, it was surprising to
discover that in the J.R.M.E. listing of 223 research articles in
1985 only 8 were remotely connected with the topic, that in the same
listing.for 1986 only 7 out of the 236 articles were related and at
PME XI no papers were specifically focussed on.visualisation in
mathematics education.

2. THE "OBJECTS" OF VISUALISATION

Mathematics isa subject which is concerned with objectivising
and representing abstractions from reality, and many of:those
representations appear to be visual i.e. they have their roots in
visually sensed experiences. These visualisations may be relatively
primitive, i.e. imagining a particular door handle being rotated, or
they may already be relatively abstract, i.e. an imagined right
angled triangle inscribed in a circle. They are clearly of .

significance in mathematical' activity, as witnessed by writers such
as Hadamard (1945) and they have been of interest to sane
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researchers for many years.

The first point of interest is that visualisations (as I
shall term these phenomena) are a very individual matter. There is a
wide range of visual imagery used by individuals even when restricted
to mathematical activity. Presmeg (1986b) lists five different kinds
of visual imagery which she identified in her students:
1. Concrete, pictorial imagery (pictures-in-the-mind);
2. Pattern imagery (pure relationships depicted. in a visual-spatial
scheme);
3. Memory images of formulae;
4. Kinaesthetic imagery (involving muscular activity e.g. fingers

'walking");

5. Dynamic (moving) 'imagery.
Moreover the students. did not stay with only one of those types, but
used different ones in different situations.

The range of visualisations generated by individuals is
therefore an important factor to keep in mind. The quality of the
visualisations generated also appears to vary in a marked way, with.
'vividness of imagery' being a favoured 'construct (see, for example,
Richardson; 1977 and Sheehan, 1966). Presmeg (1986a) for example,
found that 'vividness_of images' did help her students, particularly
in memory situations: "Memory images of formulae, and pattern
imageS, are two types of. imagery which provide a quick means of
recall of abstract general principles and procedures, the former in
a concrete image which encapsulates a procedure, the latter in a
more schematic image which stressed regularities " '(p.301).

Other qualities of visualisations often appear in a negative
frame, relating more tothe obstacles which they can create. For
example, Hoz (1981) refers to what he calls "geometrical rigidity"
caused by a child being unable to 'see' a diagram in a different
way. Related to this is the case where the orientation of the
shape is tied too firmly with the shape itself, and for some
.children it really is a challenge to draw an isosceles triangle
which is also right-angled. Fischer's (1978) research suggests that
the preference for 'upright' figures is very deep-seated, and
appears not to be affected by particular kinds of instruction.

Other familiar examples of problems caused by. the
rigidity and symbolisation of visualisations are illUstrated in the
research of Hart (1981), Kent (1978) and Kerslake (1979).

PreameT(1986b) summarised these kinds of difficulties
experienced by the 'visualisers' in her study as follows:
1. the one-case concreteness of an image or diagram may tie

thought to irrelevant details,.or may even introduce false
-data,

2. an image of a standard figure may induce inflexible thinking
which prevents the recognition of a concept in a non-standard
diagram,-
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3. an uncontrollable image may persist, thereby preventing the
opening up of more fruitful avenues of thought. (This
difficulty is particularly acute if the image is vivid.)

4. especially if it is vague, imagery which is not coupled with
rigorous analytical thought processes may be unhelpful.

However she also caiments on the power of the generalised graphic
schemes recognised by Krutetskii (1976) and the pattern imagery
illustrated by'the work of de Groot (Harris, 1980). She shows in
her transcripts the positive value felt by pupils of having certain
kinds of visualisations available.

We have clearly moved on in our knowledge from
merely believing that all visualisations play a useful role in
mathematical activity, to understanding something of their features
which contribute significantly to that role. It seems therefore
that more attention needs to be paid in research to the particular
qualities of visualisations in order to understand more about which
visualisations are more helpful than others in a given mathematical
situation.

3. THE VISUALISATION PROCESS

The visualisations to which we have been referring
don't just happen by accident. The process of visualisation in
mathematics is recognised as a complex one but one which is
important to try to understand. Once again the focus has been on
the individual nature of this proces,and recently there has
developed a strong research interest in learners who seem to excel
in it. The so-called "visualisers"- those problem-solvers who
prefer to use, and use well, visual processing are now a
well-studied group. Krutetski (1976), Moses-(1977), Presmeg
(1986b), Lean and Clements (1981) and Suwarsono (1982) are just
same of the researchers who have focussed on this area, and have
helped to move the field away from the rather sterile
factor-analytic and psychometric studies of spatial ability which
Characterised much of the earlier research. It is perhaps just
worth noting, in passing, that it was the study of Guay et al.
(1978) which finally convinced many people that the psychometric
approach was inappropriate for studying the visualisation process.

But what then can we learn about the process of
visualisation?

Presmeg (1986b) states "A visual method of solution is
one which involves visual imagery, with or without a
diagram, as an essential part of the method of solution,
even if reasoning or algebraic methods are also employed ".

Moses" (1977) "degree of visuality" score was based on
"the number of visual solution processes (e.g. pictures,
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graphs, lists, tables) present in the written solutions".
Erutetskii"s (1976) "geometric type", "felt a need to

interpret visually an expression of an abstract
mathematical relationship and demonstrate great ingenuity
in this regard".

Suwarsono"s (1982) visuality score was high "if the
correct answer was obtained and reasoning was based on a
diagram (drawn by the pupil) or on same ikonic visual image
(constructed by the pupil)".

At its simplest then, the visualisation process appears
to involve the learner constructing sane kind of visualisation and
using it appropriately. Let us analyse this further, though. In
the problem solving situation, "appropriately" clearly means 'to
help obtain a solution'. It is surely helpful however to have a
broader notion than just -problem-solvinglecause obviously the
Visualisation process needs sane sort of trigger or stimulus, so
different tasks will stimulate different images. For example, a
task such as "Find as many figural representations. of 2x3=6 as you
can", is likely to evoke a very different response from a problem
like "What face of the dice is on top if the 2 is facing.you, the 3
is on the right and the 6 is at the bottom". Not any visual image
will do for this purpose, so once again it needs to be an
appropriate kind of visualisation' we saw in the previous
section sane of the negative effects of particular visualisations.

One implication of this analysis is clearly dot if we
want to understand more about the visualisation process, we need to
study it in a variety of task and stimulus contexts, and to move
away fran just 'problem - solving'. One hint from Presmeg"s (1986a)
study is "Apparently when a topic is first taught, a visual
presentation often aids visualisers' understanding, but practice of
the procedure or formula may lead to habituation when an image is
no longer necessary. In other words, facility led visualisers
away fran visual methods". This aspect is also referred to by Lean
and Clements (1981) in relation to the Moses study (1977) in which
most of the problems used were too difficult for almost all the
students (p.272). Clearly ease or difficulty of the task is one
feature of the stimulus context. It would therefore be interesting
to discover just how stable across tasks and other Contexts the
construct of "visualiser" is. The assumption of 'once a visualiser.
always a visualiser' is clearly being challenged. What is
important for research however is not how valid or reliable is the
label, but what do we learn from such children about the
visualisation process. That is what attention now needs to be
firmly directed towards.

4. VISUALISATION IN EDUCATION SITUATIONS

This the third aspect is intended to focus attention
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away from the predominantly individual considerations of the first
two sections of this review. Sane studies fall into the category
of 'training' and Lean (1981) has summarised these (reported in
Bishop, 1983). He concluded: "The evidende...indicates that these
various skills (involved in interpreting figbral information) are
trainable given the appropriate experiences". He did not however
find any evidence showing the success of training in visual
processing. Indeed this is not surprising in view of the highly
individual nature of visualisation which has been found. 4hat, one
might ask, can 'training' mean in this context?

Of more interest are studies like Mitchelmore (1980 and
1984), Marriott (1978) and Bishop (1973) which deal in different
ways with aspects of the material environment which interact with
visualisation. For example, Mitchelmore (1984) interpreted his
findings of relatively weak spatial and visualising skills amongst
his learners in Jamaica in this way: "Many homes in Jamaica lack
special play equipment for children. They have fewer toys...The
effect of such a bane envirament is dramatized by the exceptions
that come to light...such as the grade 4 son of a mechanic with a
workshop at his house and the grade 6 boy who often helped his
mason father; both boys did outstanding work on symmetry in rural
classes consisting mostly of farmers' children" (p.139).

From studies like these there is some evidence that a learning
environment in which structured and manipulative materials
predominate can help to encourage the creation of visualisations
and thus the visualisation process itself. This kind of research
is being up-dated by current studies of the influence of computer
environments (see for example, Noss, 1987 and Boyles, 1987).

Mention of the teacher there reminds us that there is a
strong role to be played by the social, as well as by the material,
environment. For example in all the studies reported so far in
this section, the role of the teacher (or in one case the two
parents) has been assumed as benign. Certainly the teaching shown
in Kent and Hedger's (1980) study appeared to be very helpful, frcm
the perspective of visualisation.

However, Presmeg's (1986a) study was much more
informative because it focussed as much on the teachers as on the
pupils. By using the same tasks to assess the visuality of the
teachers as she did for that of the pupils, she grouped the
teachers into three types, and analysed their teaching styles.

Of particular interest was how these different teachers
interacted with the 'visual' pupils. She says this: "In the
classes of teachers in the non-visual group, it was found that
non-visual teaching had the effect of leading visualisers to
believe that success in mathematics depended on rote memorisation
of rules and formulae". 'Visualisers in classes of teachers in the
middle group appeared to benefit from a teaching_stress on
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abstraction and generalisation which was associated with this group
of teachers. Pattern imagery and rapid use of curtailed methods
were encouraged in the thinking of visualisers with these
teachers." "Teachers in the visual group were unanimously positive
in their attitudes towards visual methods, but they were not always
able to lead visualisers to overcome the difficulties, and to make
optimal use of the strengths, of visual processing" (pp.308-9).

It is clear that because visualisation is such a personal and
individual matter, the teacher's role is a subtle one. Certainly
there need to be many more studies which take the teacher's
visuality into account, wbith look in detail at the kinds of
teaching which the teacher's own visual processing develops, and
which examine the effects of these on the individual pupil's
processes.
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ACQUISITION OF MEANINGS AND EVOLUTION OF STRATEGIES IN PROBLEM SOLVING

FROM THE AGE OF 7 TO THE AGE OF 11 IN A CURRICULAR ENVIRONMENT

Paolo Boero , University of Genoa

This report deals with the aim of observing the development of

the ability to solve arithmetical (word) problems from the age

of 7 to the age of 11 in a "curricular environment"(a complete
teaching project concerning all subjects taught in the Italian

primary school). Regarding the solving of arithmetical problems

in particular,the project focusses on the development and use

of verbal language,and the development of problem-solving stra=

tegies by means of the resolUtion of arithmetical problems with

out numerical data in various fields of experience and through

the gradual progression from spontaneous calculation strategies

to standardised calculation procedures.One reason why this re=

port may be of interest is that concerning certain crucial que=

stions related to problem solving,it allows comparisons to be

made with research carried with different methodologies in dif=

ferent experimental situations.

1. INTRODUCTION

This report deals with certain aspects. of the development of the ability

to solve arithmetical (word) problems in children aged 7 to 11.It studies

in particular the relationship between the nature of the problems proposed

(physical variables,...) and the types of reasoning which children employ

in order to solve them, the relationship between the planning of the sequen=

ce of operations to be carried out and the calculation strategies conducted

on numerical data,and the relationship between the development of verbal a=

bilities and the working out 'of strategies.

In what will of necessity be a somewhat schematic form,this report pro=

poses to point out certain phenomena which were noticed in a "curricular

environment":we have followed children as they progressed from the age of

7 to the age of 11,in the classroom,while experimenting a project which

dealt with all subjects taught in the Italian primary school(particular at=

tention being paid to linguistic education),In this sense,the report provi=

des elements for comparison with many other articles on problem solving.

Most of these articles are based on systematic,very accurate,but short-term

observations,which often are carried out in the context of a curriculum on
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which the researcher has no influence and of which he does not even know

all the details (this applies particularly to subjects other than mathema=

tics).

Paragraph 2 will outline the situations in which the children were obser=_

ved;it also explains the methods of observation used,and the tools employed

to make a comparison with a reality much vaste than the one we analysed,and

to which this report refers.

. Paragraph 3 presents the qUestions with which the classroom observations

were concerned, the analysis of the informations gathered and some conclu=

sions which emerged from this work.

Paragraph 4 contains a description of some particular examples of pro=

blems,which I regard as typifying the conclusions presented in paragraph 3.

2.THE EXPERIMENTAL SITUATION

The observations which form the basis of the present report were conducted

within the framework of a complete teaching project related to. all subjects

in the Italian primary school (6 to 11 years).The planning of this project

began in 1977,and the project itself was put into effect in 1980/81.This

project involves now 120 classes.The teacher's work is guided by detailed

outlines of the content of the-work to be done in.theclassroom,and how to

handle it.Starting with the second class (7 years),the children are given

guided worksheets on the various teaching units and the various subjects

which the project is concerned with.The extent of the worksheets is increa=

sed gradually.For every class there is a standardised test(based on "open"

questions) half-way through the year and at the end of the year.

.This report refers particularly to four classes under observation:two of

which were followed between the ages of,6 and 11,and two between the ages

of 6 and 1O.As far as problem solving is concerned;the methods of observe=

tion and analysis of the children's performance, employed were the following:

- a systematic gathering of the original texts written by the children on

all the problems that they worked on individually (about 20 each year in

each class)

- periods, of observation (from 5 to 10 in the course of each year) by a re=

searcher preSent in the classroom during the solving of particular. problems.

- taped recoraings(carried out by the teacher,or by the researcher' during

his periods of observation) of interaction between the children or of in=
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. teraction with the teacher.

- sporadic observations and reports by the teachers.

As for comparison with the other classes involved in the project, this

was achieved by means of the standardised tests conducted half-way through

and at the end of the year,and by collecting the written texts of indivi=

dual children on particularly interesting problems,which had been pointed

out to the teachers in advance.

With regards to the matters discussed in paragraph 3,the following di=

dactic choices made for the classes under observation seem to be relevant:

- the majority of the problems presented to the children in teaching units

between the ages of 6-7 to 11 were related to economic matters,natural

phenomena (like shadows),or the depiction on paper of real spacial situa=

tions (topographic maps,etc).

- some of the problems presented to the children did not contain numerical

data:the children were asked to plan a strategy to solve the problem

- in the majority of cases the problems are handled in the classroom in the

following way:first the children work individually,then they compare the

strategies they adopted to solve the problem

- before the children are taught written techniques of arithmetical calcu=

lation the teacher points out some general procedures which are based on

the calcultation strategies employed spontaneosly by the children

- from the age of 6-7 years,particular emphasis is placed on the ability

to report in writing about the processes and experiments conducted by

the class,about the solving of mathematical problems,and about the proce=

dure for handling geometric and graphic work.

3. THE QUESTIONS EXAMINED

Further on,when I speak of "solving strategies" ,I will be referring to

the sequence of operations chosen by the pupil in order to solve an arith=

metical problem (including possible practical techniques involving coins

or strips of paper or the making of graphs,etc.).When I speak of "calcula=

tion strategies",i willbe referring to activities involving numbers,which

produce intermediate numerical results or a final solution of a Problem:

When I speak of "calculation procedures" I will mean the making of calcula=

tions following routine procedures which have already been explained to

the pupils,and which they recognise.

It is well-known that in many cases it is difficult to distinguish bet=
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ween these elements involved in the solving of arithmetical problems.Howe=

ver,there are arithmetical problems,which are widely employed in our clas=

ses,in which it is possible to induce the children to concentrate their at=

tention on solving strategies or on calcultation strategies (see par.4)

3.1.EXperience fields.and strategies employed:regarding .the solving strate=

gies and the calculation strategies employed,what is the role of the "expe=

rience field" proposed by the teacher (economic problems,problems of time

span,etc) for the development of the skills involved in the solving of arith:

metical problems ?As the examples in paragraph 4 will show in more detail,

regarding the relevance of the "experience field"in helping the child to un=

derstand the meaning of certain arithmetical operations and solving stra=

tegies,our observations tally with the results of other research that has

been carried out. The contribution that certain "experience fields" can

make to the development of calculation strategies also seem to be relevant.

This applies both to the properties of the operations implicitely employed

by the child,and to the identification of general calculation procedures,

One interesting result of our observations is that when it comes to making

implicit use of the properties of the operations ,the Child immediately

seems to be able to perform the jump from problems solved in certain "exile=

rience fields" to mental calculations with "pure" numbers.On the other hand,

the child does not seem to be able to make the jump spontaneously from one

"experience field" to another (this confirms the importance of the "experien:

ce field" in stimulating certain types of behaviour).Finally,we observed

that within a single"experience field ",with the same physical variables and

analogous numerical values,the nature of the problem proposed can lend to

various strategies depending on the way the child perceives the problem.

3.2.Solving strategies and calculation strategies:is there any consistency

betWeen the first and the second ? In particular,are the meanings of the

operations involved in the choice of operations,consistent or not with the

meanings of the operations involved in the calculation strategies used in

the operations chosen( before the children have acquired the techniques of

written calculation) ? Our observations would seem to indicte that such con=

sistency is not always to be found,but that in calculation strategies, along:

side the meanings of physical variables expressed by numerical data,an im=

portant role is played by the particular numerical values. assigned and by

the experience in the use of calculation strategies acquired in other cir=

cumstances.In particgalefor observed inconsistencies in connection with pro=
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blems of subtraction(which,at a numerical level,were often solved by means

of a "completion",irrespective of the fact that the problem calls for "ta=

king away"),and aloOVe all with problems o division (in many cases,in si=

tuation calling for a "subdivision into equal parts",we observed calculation

strategies based on comparisons and content- container relationships),It is

possible that these inconsistencies derive from the fact that in our project

problems of"completion" and problems of division of homogeneous quantities

are dealt with before the other problems of subtraction and division respec=

tively.The inconsistencies pointed out do not have any harmful effect as far

as the ability to solve problems is concerned,but they make difficult to pro=

yide the child with a formal description of the way he reasons when he tries

to solve a problem:" 4500-1850 =..."is a good formula to describe the

choice of operation required to solve a "remainder" problem,but a good de=

scription of the calculation strategy adopted by many children would be :

1850 + = 4500 "

3.3.Calculation strategies and calculation procedures: what degree of autono=

my and awareness it is possible for children aged.7 to 11 to reach regarding

the shift from spontaneous calculation strategies designed to solve particu=

larproblems,to general calculation procedures'?We carried out observations

and experiments concerning the four arithmetical operations,paying particu=

lar attention to the working out of a written calculation technique for di=

vision.We think we are justified in concluding that in the classroom it is

not difficult to elicit (by proposing suitable problems with suitable nume=

rical data) spontaneous calculation strategies which are convenient for ap=

olication in universal calculation procedures;however (at least until the

age of 9-10) the pupils do not seem capable of evaluating.by themselves

which of the resulting strategies is the most suited to being transformed

into a general,efficient calculation procedure.Moreover,it sometimes hap=

pens that the procedures developed in this way in the classroom are not in .

accordance with traditional standard procedures (see 4.3).

3.4.Verbal language and problem solving: what is the role of verbal language

in the solving of arithmetical problems ? In our classes we.have the possi=

bility to influence the development of linguistic skills,since,from the age

of 6 to 11,the teacher is the same.We are thus able to observe how,as far.

as problem solving is concerned,such an influence results in different be=

haviour and performance compared to classes which follow a traditional cur=

riculum of linguistic education. In all our classes each child is normally
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required to illustrate the solution he has worked out.The children are also

advised, to write down what they think while they are trying to solve a pro=

blem.In some classes of children aged 6 to 11,particular attention is paid

to the activity of verbalising work produced in class.This may involve di=

scussions of how pocket calculators work,or an explanation of automatic pro=

cesses,etc.These verbalisatiOn activities share the characteristic of requi=

ring the child to develop an expository language whose logical organisation

is linked to that of external object to which the subject refers.A compari=

son between classes which have undertaken these activities extensively and

classes which have not,reveals a significant difference in the ability to

produce a written solution to the problem.This applies above all to the more

complex problems,or to arithmetical problems without numerical data.Such

differences were observed not only in the quality of the expository text

nroduced,but also in the ability to produce such a text,and thus in the a=

bility to solve a problem.However,regarding the use of verbal skills in the

working out of calculation strategies,the differences between the two groups

of classes were much less striking.In classes which engaged thoroughly in

the non-mathematical verbalisation activities described above,we noticed

that some children use verbal language extensively in the working outof cal=

culation strategies too,since they prefer this to the formalism of algebra

or the language of graphs.Howeveromanychildren in these and in the other

classes seem reluctant to verbalise the working out of calculation strate=

gies,as if in their mind the rythms of reasoning about numbers were "out

of phase" with the requirements of verbal text production.

Experienceof verbalisation in a non-mathematical context in situations of

"bound logic" creates a great difference in the ability to identify and de=

clare which characteristics of a given calculation strategy are suitable

for general adoption.

4.SOME EXAMPLES OF PROBLEMS ANALYSED
.

Given the limited space at my disposal,it is not possible to give a deta=

iled illustration of one or more of the problems which were used as the ba=

sis of our classroom observations.Thus I will confine myself to describing,

in a very concise way,some problems related to the points considered above.

I must emphasise however, that each of them forms part of a work programme

concerned with the same "experience field" and that such a programme usual=

ly contains many problems which are presented over a number of years.

199



183

4.1.Subdivision of lengths: the following problems are usually proposed to

nine-year-old children:

a) the children are required to plan the depiction of a period of twenty cen=

turies along one of the classroom walls,in such a way that for each century

there is available a "space" equal in length to that which is reserved for

the other centuries. .

b) the children in the class (usually,between 18 and 25) are required to

spread out at an equal distance from each other around a circle drawn on the

floor of the gymnasium,or along a wall in the gymnasium.

For a) there are two types of solving strategy : in the first one, the

children plan to measure the lenght of the wall,then to divide this lenght

into 20 equal parts,etc. In the second type of strategy,the children plan

to place a strip of paper or string on-the wall and then to lenghten it or

shorten it "until it fits exactly 20 times".

For b) (whether one is dealing with a circle drawn on the floor,or with

a wall in the gymnasium;and I must point out that the children have never

measured in the classroom the circumference of a circle before) the vaste

majority of the strategies adopted involves dividing the length of the wall

or circumference of the circle into as many equal parts as there are chit=

dren in the class.Even the children who have started with the idea of the

"equal space between one child and another",spontaneously after ask them=

selves "how much space is there for each child".

These two problems are presented ,at the same time,to classes which have

previously carried out very similar activities:the difference in strategies

adopted is very striking .As we saw in 3.1.,the nature of the problem and

the way the child perceives it seem to be important factors in distinguish=

ing between strategies.As was.made clear in 3.4.,as far as both a) and b)

are concerned,striking differences are to be found between the success rates

of classes which are accustomed to extensive "bound logic" verbalisation

activities and classes which are not.

4.2.Distributive property in multiplicative problems :let us consider the

following two problems which were presented to children aged 7-8 before they

had learnt multiplication (written) technique:

c) the purchase of five objects which cost 310 liras each

d) the calculation of the total Length of a strip of paper consisting of fi=

ve pieces,each 310 centimetres long.

These problems are also presented at the same time to classes which have

for the most part followed the same teaching programme on word problems.
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In the first case,most of children decide to group together the hundred li=

ra coins(" which makes 1500 liras") and add the five 10 lira coins.Whereas

in the second case,most of the calculation strategies consist of making ad=

dition in columns (or in lines): "310 and 310 makes 620,add 310,makes

As we saw in 3.1., the calculation strategy seems to be heavily influenced

by the nature of the variables involved ,and by previous experience(practi=

cal and numerical) of problems assigned in the same "experience field".

The jump from the field of operations with numberiinvolved in problem a)

to the field of 'pure" numbers (mental calculation) is made spontaneously

by many children.

4.3.From.problems of division to the technique for the written calculation

of divisions:when the children in our classes are 8 -9 years old,we begin

work which in 3-4 months will lead to a technique for the written calcula=

tion of divisions,consciously worked out,by the children themselves on the

bases of spontaneous calculation strategies used in problems of division

with suitable numerical data.Examples of strategies worked out :

e) with sums of money such as 12000 liras to be subdivided among,say,four:

children,many children spontaneously reason in this way: "one thousand

for the fiist,one thousand for thesecond....7(notice that this strate=

gy is never suggested by our teachemhoWever it is present in the chil=

dren's activities outside theschOol.environment)

fl) successive approximations:being required to divide 37500 liras among,

16 children,many children "try for":1000 liras each...2000 liras each...

3000 liras each...(too'much!),alright,I'll try 2100 each...2200 each..."

f2) with tee same sum of money and the same number of children,other chil=

dren (a minority) "try for": "1000 liras each...2000 liras each...3000

liras each...(too much!) ",so they subtradt 32000 liras froM 37500 liras

and carry on,dividing the remaining 5500 liras among the 16 children,etc.

It is not easy for the children to realise by themselves' the superiori=

ty of the calculation strategy f2) with a view to auniversal procedure'

for the calculation of divisions.Moreover,it must be pointed out that such

a universal procedure is not the standard one taught in the majority of

countries.It should be noted also' how the children handle a typical problem.

of "sharing out "' by reasoning about "content-container relationship" in the,

moment when they work out the calculation strategy.

REFERENCES : see : LESH,R. - "Conceptual Analysis of Mathematical Ideas and

Problem Solving", PROCEEDINGS P.M.E. 1985.pp.73-96

2O



- 185 -

THE RELATIONSHIP BETWEEN CAPACITY TO PROCESS
INFORMATION AND LEVELS OF MATHEMATICAL LEARNING

Dr. Gillian M. Boulton-Lewisl
(Brisbane College of Advanced Education)

This paper is a description of studies between 1985 and
1987, of the relationship of levels of .capacity to process
information to mathematical knowledge in rural-urban and
urban Australian Aboriginal and non - Aboriginal children,

aged 3-8 years. The 1985/86 results for rural-urban
Aboriginal children are discussed in this paper. The 1987

data will be presented at the conference. Capacity to .

process information was measured by four tasks; two that
allowed comparison of results with large studies and other
populations and two that assessed the same levels of
capacity but utilized knowledge systems familiar to
Aboriginal children. Tests were also designed to measure
basic length and number tasks at increasing levels'of demand
on processing capacity. In 1987 formal school mathematics

learning was also measured. Measures of capacity were
significant predictors of performance on length and number

concepts. The performance with age of Aboriginal children
on capacity and, basic length and number tasks, was comparable

with non-Aboriginal children. 'The results indicate that
lower school achievement by these children cannot be
attributed to lesser capacity to process information or to
inability to cognize-basic.mathematical concepts. Other
factors that probably affect school achievement are
discussed briefly.

This paper is concerned with one important factor in,learning, that is.

increase in capacity to process information, and the extent to which it

determines the Complexity of mathematical concepts that young Aboriginal

and non-Aboriginal children should be able to cognize.

Cognitive theorists such as Case (1985), FisOher (1980) and Halford.(1982)

have argued, from different theoretical perspectives, that there is an

upper limit to children's capacity to-process information which increases

with maturation and learning. Case (1985) described measures and norms

1 The research described in this paper was funded by grants from the

Australian Inttitute of Abpriginal Studies and was carried out in
collaboration with Hope Neill (Catholic Education) and Graeme S.
Halford (University of Queensland).
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for short tern storage space (STSS) and demonstrated that STSS increased

with age. He postulated that increase in STSS would determine the

complexity of concepts that children could learn. Fischer (1980)

described the construction and control of hierarchies of skills that he

maintained are domain specific and limited by increasing capacity.

Halford (1982) proposed three levels of thinking that depend on children's

increasing capacity to match systems of symbols to elements in the

enviroiutiiit. At level 1 children should be able to cognize binary

relations, at level 2 binary operations and integrations of relations such

as those required in transitive reasoning, and at level 3 compositions of

binary operations. Halford has identified examples of thinking at each of

these levels, on the basis of empirical evidence and analysis of demand.

Most of the tasks in this research have been designed or analysed to

measure the first two levels of thinking postulated by Raiford.

There have been recurring debates in the literature of culture and

cognition (cf. Laboratory of Camparative Human Cognition, 1983) as to

whether there are cultural differences in cognition as such or whether

culture and cognition form an interacting system which produces context

specific differences in performance.. The hypothesis in this research is

that the latter is the case. It is assumed (cf. Fischer, 1980) that

capacity to process information is applied selectively to specific

concepts within a domain depending on motivation, experience and

knowledge. This should mean that a child in a particular cultural setting

will only perform to capacity on same of a possible set of concepts that

make the same cognitive demand. It should be possible to predict however

that if a child succeeds on one task at a particular level of demand then

s/he has the capacity to cognize an isomorphic task, given sufficient

motivation and experience. Boulton -Lewis (1983, 1987a) for example found

with a sample of non-Aboriginal Australian children, aged 3 to 7 years

that as capacity to process information increased so generally did

knowledge of components of length measuring.

Australian Aboriginal children, including those living in urban

environments, are usually not as successful with formal school learning as

non-Aboriginal children (Bourke and Parkin, 1977; Seagrim and Lendon,

1980; Watts, 1976). It was known that the children tested in 1985 and

1986 (Boulton-Lewis et al. 1986, 1987b, paper submitted) did not perform
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as well as non-Aboriginal children on mathematical and other tests in the

final year of primary school. Differences in cognition and school

learning in Aboriginal children have been variously attributed to

differences in cognitive style (e.g. Watts, 1976), processing strategies

(Kearins, 1976; Klich and Davidson, 1984) or environmental factors rather

than intellectual capacity. This research addressed the hypothesis that

Aboriginal children have the same capacity to process information as any

other child but for social or cultural reasons perhaps do not learn to

apply that capacity to school mathematics.

THE RESEARCH PROGRAM

Samples

A preliminary study using four capacity measures was carried out in 1985

with a sample of 20 children of mean age 6 years (Boulton-Lewis et al.

1986). In 1986 a sample of 75 children from Cherbourg, aged 4-8 years,

was tested for processing capacity and basic Mathematical concepts

(Boulton-Lewis et al. 1987b; paper submitted). Children in both samples

attended school at Cherbourg.

Cherbourg is an Aboriginal community just out of Mbrgon, which is a large

rural town about 290 km north of Brisbane. The community was established

in 1905 (Koepping, 1977). The population has been described as a high

contact Aboriginal group (McElwain and Kearney, 1973). Most of the

Children in the samples were 3rd or 4th generation residents. The people

of the community originally came from different language groups but now

most speak standard English with some local dialectical variations.

In 1987, 60 urban Aboriginal children aged 4-8 years and a matched sample

of 60 non-Aboriginal children, all attending Brisbane schools, were tested

with the same measures of capacity and basic mathematical concepts and

with additional tests of school mathematics learning.

Tests

1. Capacity Measures

Because this research was conducted in a cross-cultural situation two

of the capacity tests were chosen to allow comparison of results with

those obtained with large-samples of non-Aboriginal children elsewhere

(viz. Cucui, cf. Case, 1985, and the Matrix Task, Halford, 1980). TWo

other capacity measures were designeAto measure levels of capacity
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process aspects Of familiar knowledge systems. The Playing Card

Relations test measured levels of processing of knowledge of playing

cards. The Family Structure test relied on children's knowledge of

family relationships (usually a matter of importance to Aboriginal

people). All of these tests are described in detail elsewhere

(Houlton-Lewis et al. 1986, 1987b, paper submitted). The Family

Structure test is described briefly below as an example.

The critical feature of transitive reasoning. is the ability to

integrate relations. The Family Structure test was designed to

measure capacity to cognize binary relations and then to integrate

these. For example at level 2 of this test the ability to explain

that, if John is the son of Mary, and Mary is the sister of Jane, then

John is the nephew of Jane, entails integrating relations and measures

the same essential cognitive process as reasoning that if a>b, and

c<b, then a>c. Thus'the cognitive process of transitive reasoning was

measured using a familiar knowledge system. At level 1A of the same

test, after discussion of pictures of a family, children were merely

required to recall names and positions of family menkers e.g. "That's

Mary". "She's the Mother". At level lR children were required to

describe family relationships, in response to questioning, in terms of

a single binary relation, e.g. "This is John. He calls Hope his

sister because they have the same mother and father/family."

2. Length and number. tasks.

Tasks were devised to test knowledge of length and number which

required responses demanding reasoning at level 1 (nominal knowledge),

level 1R (binary relations) and level 2 (integration or composition of

relations). Children were asked to name, compare, order and seriate

.lengths. Finally.they were asked to determine comparative lengths of

configurations on the basis of the size and number of component

units. Similarly children were tested for ability to subitize sets

with from 2-4 members (level 1), order pictorial representations of

sets (e.g. 3,4,5,6 objeCts) by pair by pair caparisons (level 1R) and

to perform the operations of addition, subtraction and reason

transitively (level 2). These tests are all described in detail in

Boulton-Lewis, et al. 1986, 1987b, paper submitted. Finally in 1987

children were tested for written symbolic (generally school learned)
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knowledge of the concept. tests described above.

Testing Procedure

The testing method was a kind of clinical interview. Children were tested

one by one, mostly by trained Aboriginal people. They were asked to

respond to materials and pictorial representations. Practice was included

priok to all the tests. Some of this was quite extensive as in the Matrix

Completion task (Halford, 1980). In that test children were given up to

16 opportunities to complete a matrix with coloured shapes before being

tested at each level. This was to ensure that the child was familiar with

the concepts and task involved so that what was subsequently tested was

the level of capacity to process information.

RESULTS

Regression analyses were computed with the four measures of information

processing, singly, in combination and also with age controlled, as

predictors of success on each of the length and number concepts. The mean

STSS on the Cucui test (Mr. Peanut in this study) the earliest age of

success and the percentage of the sample who succeeded on each of the

length and number tasks were also calculated. Tables for each of these,

and the 1987 analyses will be presented and discussed at the conference.

In summary the 1985, 1986 results indicated that the Playing Card

Relations test at level 2 was the best single predictor of the following

length and number tasks that required binary relations (number

comparisons), binary operations (addition) and transitive inference

(number seriation, length seriation and co-ordination of the size and

length of units). The Matrix Completion task was equal or best as a

predictor for three of the tasks (subitizing, number comparisons and

subtraction) and was almost as effective as Playing Card Relations as a

predictor for addition and length seriation.

Regression analyses for all four measures of capacity, in coMbination,

showed that Playing Card Relations followed by the Matrix Completion task

made the greatest contribution as predictors of performance on length and

number concepts. The Family Relations test made the greatest contribution

as a predictor of performance on number inferences. Further regression

analyses were computed to assess the unique contribution made by each

predictor variable. The matrix task made a unique contribution as a

predictor variable on more tasks than any_of the other measures.
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On the basis of these analyses the Matrix Completion and the Playing Card

Relations tasks were the strongest predictors of success with length and

number tasks. Integration of number and length of units was the only task

for which age as a factor increased the variance accounted for by the

capacity measures.

The mean age of the sample was 6.4 years and the mean STSS was 2. This.

STSS was expected on the basis of hypothesised and empirical scores

proposed by Case (1985:324). The percentages of the sample who succeeded

at Level 2 of the Matrix, Playing Card Relations and Family Structure

tasks were 0.34, 0.64 and 0.64 respectively. It would be expected on the

basis of results obtained by Halford (1980) that more children by age 5 or

6 onwards would perform at Level 2 on the Matrix task. However, success

at Level 2 on the capacity measures that were designed specifically for

this study was as expected for children in this age range.

The earliest ages and percentages for success on length and number tasks

were canparable with predictions from the literature for each task. The

only result that was surprising was that for subitizing. Perhaps children

at Cherbourg do not talk about "threes" and "fours" at home as mud: as

other children. It is possible that the first real number quantifying

activities for these children occur at school and depend on counting.

DISCUSSION

The results indicated that this sample of Cherbourg Aboriginal children

possess capacity to process information, as measured by the Cucui and

Matrix tasks that is canpaorable with non-Aboriginal children at the same
age. Moreover on tasks specifically designed to measure levels of

thinking of concepts based on familiar knowledge systems they performed as

one would expect of other children of the same age with equally familiar

material.'

Capacity measures were significant predictors of performance on basic

mathematical concepts for length and number. In addition performance with

age on the length and number tasks was comparable with results obtained in

other studies. These children are cognizing concepts basic to length and

number learning. If their cognitive style (cf. Watts, 1976), strategies

Kearins, 1976) or processing modes (cf., Klich and Davidson, 1984)
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are different they are apparently nevertheless effective. It is known

that the children at Cherbourg at a later stage in their schooling do not

achieve as well in mathematics as their non-Aboriginal peers. The results

of this study show that the lack of achievement cannot be attributed to

lack of capacity or inability to cognize basic mathematical concepts.

Lower achievement by Aboriginal children in school mathematics is probably

a function of educational and environmental factors. Learning school

mathematics may also be affected by the fact that there are variations

from Standard English in the language spoken by children at Cherbourg.

Same of these variations cause the children to talk about and probably

cognize mathematics concepts inaccurately.

Employment opportunities at Cherbourg are limited. In order to gain

employment outside the community children must succeed in school. The

Challenge that faces teachers of mathematics is great. School mathematics

must appear to have real world meaning and language differences must be

dealt with explicitly. In addition curriculum content should be analysed

for demand on capacity and sequenced accordingly.
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MATHEMATICAL VULNERABILITY

Linda Brandau

The University of Calgary

Autobiographical in form and theory, this paper relates views

of mathematics of pre-service elementary education majors to

the historical development of mathematics. That is, their

growth, similar to the history of mathematics, has been marked

by the themes of certainty, uncertainty, and vulnerability.

Central to this paper is the effort to discuss mathematics

(usually a cognitive subject) and vulnerability (usually an

emotional subject) in a way that does not perpetuate the

separation between the two.

In one view of its historical development, mathematics has shifted

away from the certainty of Euclidean geometry towards the uncertainty

proved by Godel in 1930. This mathematical uncertainty has been marked

by vulnerability, thus leaving mathematics open to attack. In another

view, particularly that of Imre Lakatos, mathematics has always been

uncertain, vulnerable, and has grown through such attack.

In this paper, these views of mathematics will be related to what I

have noticed in students studying to be elementary school teachers. That

is, certainty and uncertainty have been manifested in their process of

questioning, reflecting, and examining their views of mathematics, a

process resulting in enriched and expanded views. Investigating this

process is important. If students studying to be teachers can expand and

enrich their views of mathematics, then the way they teach mathematics

will be expanded and enriched.

Also important to this paper is the autobiographical form it will

take. Since fall, 1986, I have kept fieldnotes, journals (both personal

and professional), and other important data related to my teaching of

university elementary mathematics methods courses. My interest in doing

such research stems from the realization that I think very differently
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about mathematics and its teaching since I was a junior high school

teacher. My views about mathematics and mathematics teaching have also

expanded and this process will be an integral part of this paper.

Therefore the theoretical basis lies in the assumption that coming

to know one's self, (exploring one's own behavior), is a way of

understanding the external world (exploring other peoples' behaviour).

In fact, this self knowledge includes understanding one's observations of

others, since one cannot separate self-understanding from all

understanding.
1

This last idea, especially concerning separation, is

important because the mathematical vulnerability theme is one that brings

together two themes (one usually thought of as cognitive and one usually

thought of as emotional) commonly studied separately.

Understanding my use of the concept of separation is crucial to the

theoretical basis of this paper. That is, I can make distinctions

between emotion and cognition but this is not the same as saying that

they are separate. When they are viewed as separate, an artificiality is

created. The difference between distinction and separation needs more

discussion.

Where do I begin? With a conference in June 1988 sponsored by the

School of Education and the Department of Women's Studies of the

University of Haifa. The theme of the conference is "Private Women -

Public Work". My talk is titled, "On Being a Nurturing Mathematics

Educator: Connecting Professional and Private Lives".

When I was planning my paper, the theme struck a chord. My

professional work in autobiography (in terms of studying my university

teaching) was also my private life. In fact, using the word "connecting"

in the title of the talk was misleading. It implies that there are two

separate worlds to be connected, an implication that didn't bother me

until discussing the paper with a colleague. 2 He mentioned that I might

say that my mood will color how I learn or teach mathematics. But there

is no uncolored knowledge. (See Heidegger, 1962.) So instead, I need to

say that my mood cannot be separated from how I learn or teach

mathematics, although they can be distinguished. This difference

(between separating and distinguishing) is important in that it is often

assumed that if I can distinguish, then those discernible things are also

separate. But in the process of separating we often forget that

understanding is holistic in nature. Categories like emotion and
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cognition (or professional and private) are helpful in making

distinctions as long as we do not also assume that they are separate.

When I used the word "connecting" in the title of my Israel talk, I

was concerned about making a connection that was already made. Thinking

about professional and private as separate was artificial. These same

points relate to the interest I have had in the interplay between emotion

and cognition. Since finishing my dissertation (Brandau, 1985a), I have

been struggling to find a way to study that "interplay" (e.g. Brandau,

1985b). I have also watched, with excitement, while other researchers

(McLeod, 1987, for example) were doing work involving the same theme.

But perhaps my thinking about emotion and cognition as separate has been

underlying my struggle. As the point was made about professional and

private lives, emotion and cognition are not separate at all. When you

study one, you also study the other. We can make distinctions, between

emotion and cognition but when we make the assumption that they are also

separate, we create artificiality.

There is also an important connection here to mathematics teaching

and learning. If we want students to see that separating mathematics

into discrete pieces is artificial, then we need to recognize that other

separations, particularly ones made in research, are also artificial. We

may need to make distinctions between the topics of geometry and algebra,

but when we also separate them, and continue to separate them, students

come to believe they are separate. Similarly, in research, when

distinctions between emotion and cognition evolve into assumptions of

separation, then they are studied as separate, are thought of as

separate, and continue to be studied as separate.

I have been stressing the artificiality of separation because of the

theme of this paper, mathematical vulnerability. Even though we may need

to distinguish between the words mathematics and vulnerability, to think

of them as connoting separate images (cognitive and emotional ones) is

artificial. So that the impression of separateness is not perpetuated, a

form of doing and reporting research is needed. I hope that this paper

can move towards accomplishing this.

*****

A television program on NOVA titled "A Mathematical Tour" dealt with

the theme of mathematics developing from a field concerned with certainty

to one recognizing uncertainty. When non-Euclidean geometries were
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created, the certain world of mathematics was shattered. Euclid's

"truths" were seen as self-evident and went unchallenged until the mid or

late nineteenth century (Davis and Hersh, 1980). Since Euclidean

geometry was seen as the foundation of a certain mathematics, when that

went challenged, all of mathematics went challenged. Was mathematics now

resting on a foundation of quicksand?

Set theory became the new foundation with Bertrand Russell spending

much of his life trying to reformulate set theory into certainty. He

wrote, "I wanted certainty in the kind of way in which people want

religious faith. I thought that certainty is more likely to be found in

mathematics than elsewhere."(quoted in Davis and Hersh, 1980, p.333)

The search for certainty continued until 1930 when Godel showed,

with his incompleteness theorems, that certainty was impossible to

achieve.

A way of dealing with this uncertainty was brilliantly shown by Imre

Lakatos in Proofs and refutations (1976). Lakatos showed that

mathematics and even the history of mathematics was fallible. He showed

them to be dynamic processes, growing through the search for

counterexamples to existing theories while simultaneously proving these

theories. So proof occurs through a clash of views, and mathematics is

vulnerable, yet growing because of that vulnerability.

In a world of shifting certainty and uncertainty, there would need

to be less worry about control. In recognizing the uncertainty of

mathematics, we have had to release the concern for control. We have had

to accept the anxiety that can accompany uncertainty. That is, if

mathematics can be uncertain, then we can never known when an "already

proved" problem can be "disproved", or when a well-established theory can

be challenged.. What can be anxiety provoking is never knowing when our

world will change.

These ideas have surfaced in university courses I have taught. In

one class, when we were discussing the interrelationship between

mathematics and philosophy, one student verbalized a sudden awareness

with sadness. I had removed the last area in her life which she felt had

certainty. To her mathematics clearly had had right and wrong answers.

Another reaction, which was filled more with anger than sadness, occurred

in an early childhood methods class where I gave a guest lecture. I had

asked the students to do a problem for which several right answers can be
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obtained, depending on how you interpret the problem. Students were

angry and confused. Many of them said, "if there are problems in

mathematics with more than one right answer, then the next thing you'll

be telling us is that 2 + 2 = 5!!" Their reaction indicated a loss of

control. If mathematics is not certain, then it is chaos.

Facing this loss of control and uncertainty occurred in another

methods course I teach. As part of the requirements, I have students

keep a weekly journal. One purpose of the journal is to have a place to

work mathematics problems, ones in Thinking mathematically by Mason,

Burton, and Stacey (1985). This book promotes the learning of

mathematics as a process, one similar to the one promoted by Lakatos.

Problems in this book cannot be done in a few minutes. Students learn

that doing mathematics is uncertain; sometimes answers to problems are

not given; sometimes there may not even be an answer. Students learn

through argument and counterargument, mostly with themselves. For all

the students, working through this book is a very different mathematical

experience, and one that leads to growth. I share some reflective

thoughts from one of these students.3

Thinking back to those first few lectures way back in
September, ... I thought of math as a series of steps that followed
one after the other. If the steps were taught well, math was easy.
If a teacher skipped some steps than math was hard. I had a very
narrow idea about math and my own personal fear further restricted
that view. I always felt that a person could either do math well or
couldn't do it at all and that when you did math it was either right
or wrong. This course certainly changed my mind!

First of all I was intimidated by how "personal" you made the
math. Not only did you let us do the math ourselves but you
encouraged us to openly discuss feelings, and how we tackled certain
problems...

My first attempts at working from the book Thinking
Mathematically were disastrous and frustrating. "I can't do this"
was my common complaint and I began to experience again the agony of
math classes. It wasn't until well into the course that I began to
pilt one and one together... By personally attacking the problems it
became clear that there were no right or wrong methods. Math was
personal and I could use which ever approach suited me best. Often
problems were not solved with a straightforward answer and usually
involved some thinking, figuring out and reattacking the problems
from a different angle...

To help our students grow, it is also important to show ourselves as

vulnerable human beings. In the Lakatosian sense, show that our ideas

about mathematics (and about teaching) are open to argument. Two

incident have'elicited the student reaction, "it made me feel so good to
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see you, a mathematics professor, struggle and show us that struggle".

One incident involved a student presenting a problem her grade 7 son had

to do for homework. We worked it together, as a class, with me at the

overhead projector. At first I tried to do the problem by working

backwards, and then switched to trial-and-error. Her comment, related to

my struggle, meant that she saw that I did not know how to solve the

problem at first. Perhaps implicit in her comment was the thought, "I

always thought professors knew everything." The other incident involved

discussion of the division concept. A student tried to help me

understand her interpretation of division, one which I did not understand

at the time. During coffee break she explained her view to me again;

this time I understood it, and shared my new knowledge with the entire

class. Here, the student referring to my struggle, was referring.to my

willingness to acknowledge my own growth as a learner, a willingness to

relinquish control of what students often see as "expert authority".

*****

The issues of control, resistance, and vulnerability are ones

dominating my life these days. A letter arrived from Kathryn, a student

of mine last year and now a close personal friend. 4
It was in response

to my lengthy letter describing a recent conversation with a man, one who

I have not known for a long time (in terms of weeks, months, or years)

and yet one to whom I told a great deal about myself. My letter to her

was filled with feelings of vulnerability. It asked: How could I tell

these personal intimacies to someone I didn't know? Could I trust him

with this information about me? And what does "really" knowing someone

mean anyway? Kathryn wrote back about risk taking, vulnerability,

intimacy, responsibility, freedom, resistance, and insecurity. She wrote

that she admired me for the risks I was taking. I didn't feel admirable,

just scared and vulnerable.

Reading Kathryn's letter made me aware of how much this

vulnerability permeates my teaching. The way I teach is risky. I'm

trying to create a certain atmosphere in my methods courses, one that

allows for honesty, risk taking, and freedom. The atmosphere needs to be

a safe one that allows students to express their fears about mathematics

honestly. This makes them vulnerable, with me and with other students.

And yet such expression gives them the freedom to move beyond their fears

and to learn the mathematics they feel they never learned.
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It is difficult to be honest, not only with others but with one's

self. When I'm honest, I'm vulnerable and admitting to a side of myself

that I may not like or want to know exists. And yet being truly honest

and vulnerable feels like freedom, and hence growth. Recently I was

honest (and hence vulnerable) with a male friend. It was difficult and

yet I now feel free--free of all the bottled-up emotions that I've been

afraid to acknowledge openly with myself and with him. And I feel that I

have grown; growth occurs when we risk and show vulnerability.

It is important that students be aware of my growth. I have

discovered that they hear my beliefs about mathematics, and assume that I

have always held these beliefs. But my school training, similar to

theirs, was one that emphasized mathematics as computational skills,

where problems had one right answer and one right way to do them.

Theories in geometry were memorized, as immutable truths discovered once,

only to be regurgitated for all time. It wasn't until graduate school

that I began to view mathematics differently. My training in sociology

(and theories of multiple realities) led me to question the idea of one

truth and led me to reading more about mathematics, especially as written

by Davis and Hersh (1980, 1986). And my training in ethnography started

me asking thi question: Why is this occurring the way it is? Becoming

aware of the research into children's strategies of thinking helped me

become aware of individual differences even in university students.

In my teaching, I try to get students to think critically about the

teaching and learning of mathematics. The uncertainty that accompanies

such constant questioning can be frustrating. Students want a list of

the ten steps to being a successful teacher. They want certainty and

control. I want them to see that teaching means constant questioning and

learning. I want them to see teaching as similar to the process used by

Lakatos, involving uncertainty and vulnerability.

In conclusion, to grow we must take risks and place ourselves in

vulnerable positions. As this has occurred in the growth of mathematics,

it can occur in the teaching and learning of mathematics and in research.

But to do so, we must admit to the artificial separations of emotion,

cognition, subject matter, professional, and private lives. By keeping

these areas separate we are concerned with controlling them. By

loosening the boundaries, perhaps even cutting them, we become open to
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enriching our learning about ourselves and others--about mathematics,

teaching, learning, and research.
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COGNITIVE PSYCHOLOGY AND MECHANISTIC
VERSUS REALISTIC ARITHMETIC
EDUCATION

Jan van den Brink

Summary .

cognitive CeVelopment psychologists hold widely differing

opinions with regard to learning addition.

According to kJobb (1987), these differences have an in-

fluence on education. We.will enumerate nine controversial

issues, give our standpoint on. each one,- and substantiate

a .number of these standpoints with examples taken from our

own educational research.

Nine controversial issues

1. Childr.en''s ideas Were not"inclUded- inall theories. de

feel that the theory.shouldtherefore be altered in order

to include children's ideas.

2. whether misconceptions and mistakes should be avoided?

de feel that children learn from using their 'misconceptions

as.a conflict. situation.

3. The influence exerted by contexts. In our opinion,'people

contexts' should be given priority over 'object contexts'

in early education..

4. The role Of the student:- as actor or,as observer - in

the research. In our opi#ion, it is important that the

students (and researchers) take on the roles of both actor

and observer.

5. whether learnirig is an accumulation of knowledge. we re-'

gard 'learning' rather as a growing awareness.of certain

actions - E.:. reaction to conflicts with, as a result,]

a reorganization of existing ideas.!

6. The emphasis on bare arithmetical.symbols devoid of further

meaning, controlled by the rulescif arithmetic. empha*

size symbols which are linked to contexts and which may

later form a rich bare structure'(arrow-language).
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7. Placing of the unchanged equal-sign between numbers and between ob-
jects. We feel that symbols of artificial languages may well
be ornamented.

8. Arriving at abstractions through analogies and metaphors.

e attach a great deal of importance to the referential

arrow - language and to conflicts. Pe 'consider the carry-

Over of structures from one context to another to be

characterized by:

a. blurring of the meaning of symbols (Von Glaserfeld,

oteffe & Cobb)

b. transparency of symbols (Polanyi)

c. flowing exchange of real-life and symbolic worlds

(Freudenthal)

9. The necessity of practice in order to establish the arti-

ficial similarities between bare sums and arithmetic ..

material and in order to memorize the arithmetic facts.

In our opinion, other activities are also imoortant for

practicing arithmetic facts: application, calculating

through reasoning, one's own productions.

Our research

oe had developed a nev. introduction to addition and sub -

traction in first grade based on the so-called 'bus arrow-

language'. ,e wanted to know whether this .introduction would

be 'better' than the traditional approach, keeping in mind

the nine issues mentioned above.

e decided to bet up a long-term (1 year) comparitive re-

search project between the first graders at two schools: the

Dreesschool (D) and the Nieuwlandschool (N). Present here

were two extremely different approaches to education: realis- .

tic arithmetic education at D and traditional mechanistic

education at N.

Research orLanization

In this research project we compared, on the one hand, the

instruction as given by the two teachers at D and N and, on

the other hand, the learning results of the students involved.

This was carried out by means of taking regular notes on

the daily in,truction (for instance in a journal) and on the
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learning achievements (through testing the children in con-

versation) throughout an entire school-year.

Research object and criteria

The arrow-language was the nasearch object whose influ-

ence on learning addition and subtraction we wished to knoW.

In Order to measure and compare learning results from both

schools-we choSe three subjects to be used as criteria. These

were tests on general arithmetic skills, the assignment of

making one's own arithmetic book and tests on missing addend

sums. The children at both schools were given the same assign-

ments and tests.

nt each school the children were divided into a group of

test-students and a group of control-students in order to mea-

sure the influence of the testing conversations on how they

learned.

Research results

"e, will now discuss certain results of this research against

the background of some of the 9 issues.

a. dhildren's ideas should be included in the theory

The phenomenon that children invent divergent images and

activities during arithmetic and mathematics lessons ha:;

long been confirmed by various researchers (Holt, 1980;

Tall, 1980; Hart,.1961; ionaldson, 1979; Jarpenter c.s.,

1981). The theorists differed with regard to .fiether edu-

cation should link up as closely as possible with the chil-

dren's ideas. Through lack of a formalization of the chil-

dren's ideas it was not possible to get a grasp on this

coint and it was therefore necessary to avoid it in the the-

ory forming (Anderson, 1981). Our research indicated,

however, that children's ideas can be used in early educa-

tion in a productive and quick fashion way when,e.g. !

introducing addition and subtraction. iliereas.N first. prac-
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ticed addition for seven weeks before introducing subtractin,
both addition and subtraction were directly introduced and
understood at

b. People, animal and toy contexts should be given priority
over object contexts.

The children's research results showed that. the mental ac-

tivities of addition and subtraction could be introduced much
more quickly in contexts in which children could play
rather than in purely illustrative object contexts. People
and animal contexts were evidently of much more significance
to children. Later in the year it became apparent, too* that
the. rate of success in solving a particular type of problem
depended upon the context in which the problem was placed.
Diffimat sums of the type: ?-b=c and c=a+? were solved by
all children when described in bus arrow-language. solutions
of one and the same. bare arrow-sum varied greatly and de-
pended upon the type of context under consideration (people,
animals, toys, etc.).

c. Actor's role and observer's role should alternate

The combination of the roleS of actor and observer wa
realized in the arithmetia:play-acting. Our results indi-
cated how suitable this manner of working indeed was;

- the children remembered the play-acting contexts accur-

ately for a long time (3 to 5 months); these contexts

therefore. formed a strong basis for later arithmetic
applications.

- one of the productive hints which could be given when-the

children made a mistake in the arrow-sums was to suggest
that they tell the story step by step.

Here one can see,' too, the impOrtance of play-acting.
It would appear that the permanent role-exchange between
actor and obServer, which is characteiistic of arithmetic

play-acting, provided extremely suitable circumstances for
learning arithmetic.

d. arrow- language: the symbols are not sacred

Yany researchers preSented arithMetic languages to children
in A simple fashion. The use of diagrams and notation3lAas

of primary importance, not the designing of them (Gagne,

Dienes, Gal'perin, Resnick).. The. mathematical symbols
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(+,-,=) were not 'embellished', but rather placed unaltered

between numbers and between objects. On the other hand,

research was conducted to see whether children could be

induced to develop their own arithmetic language by, for

example, making drawings of situationS. Aside from the value

which the illustrations had for each individual student,

the researchers were disappointed. by the results: the chil-

dren spent a great deal of time and effort on unimportant

aspects and the illustrations were not suited for general

use.

In between these two extremes is the arrow-language which

we have chosen.

Our research produced the following:

an arrow. was the pre-eminent symbol for evoking in young

children the image of a directed movement.

- embellishment of bare arrows contributed to bestowing

a variety of significances to one and the same chain of

arrows.

- 3 to 5 months after the bus-play, arrow-chains still

brought to mind the bus-context.

- arrow-language directed the attention and called he

childrdn attention tolimportant relations within a story problem,i

so that they were then able to solve the sum.

_ arrow-language was used as a subsidiary to the bus during

registration of class bus rides.

- by altering the embellishment of the arrows, the lan-

guage assisted the children in dealing with all sorts of

significances. Arrow-languagewas used as an intermediary

for moving from one context to another.

- the arrows themselves were used as embellishment in bare

equal-slaw; by which means these sums acquired an explana-

tory significance.

- finally, the arrows separated from the-significance. The

original meaning began to blur. This was evident from the

fact that children developed entirely nev, symbol combina-

tio-s.
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dymbols in arithmetic langukCges (+,-,=) should not be regar-
ded as-sacred cows. Embellishment of the arrows and use of
the arrows as embellishments in other languages are meaning-
ful activities. The function of arrow-language when dealing
more abstractly must also be mentioned here. The tramAtion

from context to context is possible via arrow-language.as
became apparent from the following phenomena:

- .iihen given the assignment of inventing as many different

arrow-sums as possible,' the children deSigned examples

both from real life and fro. the bare world of arrows
(Freudenthal).

- Addition of contextual embellishment made the arithmetic

language moretransparent: the meaning wa2, recognized

(Polyani).

- The original significance became blurred when children

invented their own symbol combinations (Von Glaserfeld,

dteffe, Cobb).

These were

structures

the three characteristics of the carry-over of\

from onacontext to another: flowing exchange

of real-life and symbolic worlds, transparency of symbols
and blurring of the original significancai

In conclusion

The opinions of cognitive development psychologists, which
differed greatly from other, formed the background for

each of the extreme educational forms. Each form of education
led to varying learning achievements.
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PROOF-AND MEASUREMENT: AN UNEXPECTED MISCONCEPTION 1

Daniel Chazan

HarvArd Educational Technology Center

This Article begins by providing background information about
ongoing research into students' understandings of the differences
between measurement of examples and deductive proof. This research
uses the microcomputer programs, the GEOMETRIC SUPPOSERS,
environments where both measurement and proof play important roles.
The article then goes on to deScribe an unanticipated misconception
about these two methods of verifying statements. This
misconception is discussed as it arises in the work on one high
school student.

INTRODUCTION

The GEOMETRIC SUPPOSER software environment is a series of

microcomputer programs which allows students to create diagrams, explore

them using measurement, make conjectures, and test these conjectures

empirically before beginning to prove them deductively. Learning

Euclidean geometry with the GEOMETRIC SUPPOSERS forces students to think

about proof differently than they would in a traditional course.

Students confront the issue of the relationship between measurement and

proof. From a mathematician's perspective, it is very important that

students understand that examples with confirming measurements do not a

proof make. For example, to prove that "An altitude froM the vertex

angle in an isosceles triangle divides the triangle into two triangles of

equal area.", it is not sufficient to show three examples with

measurements which support this statement.

One way to emphasize the difference between measurement and deductive

proof is to highlight two important characteristics of measurement. With

measurement, one can only check a finite'number of.cases with limited

precision. If a statement has a universal quantifier and is about an

infinite number of objects (e.g. all isosceles triangles), then by using

1 The proofs 'discussed in this paper are typical high school
Euclidean geometry proofs. They do not include proof by construction'or
proof by mathematical induction.
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measurement one can never be certain that all examples will support the

statement. Maybe there exists a set of cases for which the conclusion is

not true though the premise is satisfied. One can never check all cases.

Second, measurement involves tools that by definition must have a

margin of error. All statements based on measurement must be qualified

(implicitly or explicitly) by the limitations of the tool. Thus, in

measuring lengths with the GEOMETRIC SUPPOSERS, one can say that the two

measurements are equalsto one one-hundredth of a length unit. The

segments may not be equal if measured with a more precise instrument.

Thus, even a statement of equality which holds for only one triangle

cannot be proven, in a mathematical sense, by measurement.

These characteristics of measurement are complicated by the role which

counterexamples play in mathematics. While measurement cannot prove an

universal assertion about an infinite set of objects, it can disprove

such an assertion. Sufficiently large measurement discrepancies (beyond

the precision and accuracy limitations of the tool) which contradict a

statement which begins "For all triangles,..." prove that the statement

is false. Thus, there is a lack of symmetry between the power of

measurement to disprove universal statements about infinite sets and its

lack of power to prove such statements.

Deductive proof has three important characteristics which help

distinguish it from empirical reasoning. First, deductive reasoning

guarantees that its conclusions are true for all members of the given

set, even if that set includes an infinite number of elements. Second,

if the results of a deductive argument indicate that two quantities are

equal, then these quantities are exactly equal no matter what scale is

used. Third, deductive arguments can also provide an element of

illumination, or insight into why the statement is true (see Bell, 1976).

An initial concern expressed about teaching students with the

GEOMETRIC SUPPOSERS was that students would not appreciate the

differences between measurement and proof, that they would treat

measurement as mathematical proof. These concerns led us to focus on

GEOMETRIC SUPPOSERS students' ability to write proofs (Yerushalmy, 1986;

Yerushalmy et.al., 1987). In fact, a corollary of the concern about work

with the GEOMETRIC SUPPOSERS mentioned above is that students using the

GEOMETRIC SUPPOSERS will no longer see the need for deductive proof and
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will therefore not learn how to write proofs as well as students in

traditional classes. From our first two studies, this does not seem to

be the case. Students in GEOMETRIC SUPPOSERS classes produced more

formal proofs on posttests (see Yerushalmy, 1986 and Yerushalmy et.al,

1987). However, these results do not necessarily indicate that students

understand the differences between measurement and deductive proof.

Instead students may have become more interested in proof because they

are invested in conjectures which they have devised on their own and

therefore want to prove them. Alternatively, the desire to complete

their conjectures by proving them may be motivated purely by the

teachers' insistence that conjectures are not true until proven.

This article presents one story from ongoing research into students'

understanding of the differences between proof and measurement as ways of

ascertaining truth. It presents an unexpected misconception exhibited by

a student in 'a typical, non-SUPPOSER classroom. Before presenting

Larry's work, a quick description of the research background, the unit

and tests used to evaluate the unit, will be provided.

THE UNIT

The unit on the differences between measurement of examples and

deductive proof provides teachers with problems for student exploration

in a computer laboratory setting, or for whole group exploration, using

the GEOMETRIC SUPPOSERS. The teachers were provided with materials which

explained the arguments that could be made about the differences between

proof and measurement and which suggested ways to lead discussions. The

provided materials were anticipated to require two weeks of classroom

time. This unit was piloted during April and May of 1987 in two

experimental classes. One of the experimental classes had not used the

GEOMETRIC SUPPOSERS before doing the unit, one had used them all year.

There were two comparison classes which were matched classes taught by

the same two teachers. One of the comparison classes had not used the

GEOMETRIC SUPPOSERS at all. The other.used the SUPPOSERS all year and

did the problems in the proof unit without discussing them.



Experimental Classes

Comparison Classes

2].o

Used Supposer Did Not Use Supposer
All Year Prior To Unit

Did unit Did unit

Did problems, Never used
no discussion the Supposer

THE TEST

To investigate the students understanding of proof, pre/posttests were

constructed to ascertain if students felt that empirical verification

constitutes a proof. The tests had three parts. Part A presented a list

of statements about proof and solicited students' views asking them to

agree or disagree. Part B asked students to write their own proofs.

Part C of the test was patterned on work done by Martin and Herel (1986).

It provided a statement with eight different arguments for one given

statement. Each argument was on a different page. After reading the

argument, students were asked to decide whether the argument was a

convincing argument or not and whether it was a good argument or not..

They were then asked to justify their opinions.
'

Of the eight arguments, four were inductive arguments and four were

deductive ones. Below, we outline each argument.

INDUCTIVE ARGUMENTS

11--An example for which the conditions are satisfied and the statement
holds, and an example for which the conditions are not satisfied and the
statement does not hold.

1/3--Four examples for which the conditions aie satisfied and the
.statement holds.

1)5--An extreme or complicated example in which the statement holds.

#8--A repetition of the statement.

DEDUCTIVE ARGUMENTS

/)2 -A deductive proof of'the statement in two columns for a subset of the
described objects (a proof for a square with a diagonal, when the
statement is about squares with any line through the square).
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#6.--A complete deductive proof of the statement in two columns.

#6--A circular deductive proof in two columns.

piAn informal argument that is deductive and correctly done.

After giving the tests to the four classes, students' answers were

classified as "correct" or "incorrect." A sample of students including

students who had given each of these kinds of answers was selected for

interviewing. The purpose of these interviews was to check whether

students understood the questions asked in the test and to check whether

students' answers had been correctly categorized.

The following story is taken from the interview of a student from the

comparison class which did not use the unit and which had never used the

GEOMETRIC SUPPOSERS. Initially, Larry was interviewed because his

responses to the inductive arguments were "the right answers." It turned

out that he had a pernicious misconception about deductive proof. He

thought that deductive proof is as limited as measurement, that it can

only shed light on an individual case. Not all students share Larry's

misconception, but his misunderstanding emphasizes that students'

understandings of similarities between measurement (scientific

verification) and proof (mathematical verification) is very important,

even in non-SUPPOSER classrooms.

LARRY

According to Larry's teacher, Larry is a poor student, yet a very

bright boy. In his geometry class, he received a D for the year. In her

words, "if he just would have applied himself, he could have done well."

Her feeling was that conceptually he understood the material in the

course, but that he did not take the time to practice the skills that he

needed to do well in the course.

On part A of the test, Larry had answered on both pretest and posttest

that he did not agree that three examples make a proof. In part C, he

found none of the empirical, example-based arguments on the pre or

posttest convincing, though //3 (four examples) and //5 (a complicated

example) on the posttest were considered "good". Furthermore his
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comments on the posttest on three of the four empirical arguments seemed .

appropriate:

(Examples for and against)- "This doesn't tell me what happens in
every other possible case. Appearances are sometimes deceiving."

(Four examples)- "These could be the only cases where the statement
is true."

(Complicated example)- "Might be something special about these
squares to make it true here."

When interviewed, Larry's definitions of "good" and "convincing" were:

"I thought convincing meant that it would be always true--that it
[the argument] proved that the statement would always be true...
[Good means that] they went about trying to prove it quite well."

Thus, it was surprising to hear him explain his written comments on

the posttest deductive proofs (He had not written explanatory comments on

the pretest). On the deductive proof where the line through the square

was a diagonal, Larry read very carefully and saw that there was.a

mistake in the correspondence of the two congruent triangles on the test

form. He chose "not convincing" and "not good" and wrote, "The triangles

named in statement 3 are not congruent. Doesn't tell me what happens in

every other case." The last sentence seemed appropriate because the

proof was a proof of a special case, the line contains a diagonal.' In

explaining his comment Larry said, "I was just thinking of other

squares." The interviewer asked, "This proof only shows you if it [the

statement] is true for this particular picture?" Larry answered, "Yes, I

don't know for sure about other things."

Curious about this last exchange, the interviewer went on to the other

deductive arguments. For the correct, deductive argument, Larry had

chosen "not convincing" and "good" and wrote, "This may apply only in

this case." For the circular, flawed deductive proof, Larry made the

same choices and wrote "Might just be this case." In the interview,

Larry indicated that he made these choices because he felt that each

argument was a good way to go about proving the statement, but he was not

sure if the arguments applied only in the pictured cases or in many

cases.

Larry, on his own, raised another piece of evidence that made it clear

that he did not think that deductive proofs held for cases not pictured.

The diagram accompanying the last argument showed three squares of equal
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size sharing the same center E and a line through E. The argument was

that "No matter how you turn the square around the center E, the areas of

the two regions formed by the cut FG will always be the same." Larry

said "The last [argument] I said it was convincing, the'last one.... I

said it was convincing in all cases." The interviewer, "Because it says,

no matter how your turn it, that it.will always be true?" Larry, "It

wasn't very clear." Larry chose "not good" 'since the argument wasn't

clear and "convincing" since it took all cases into account.

One final indication that Larry thought that deductive proofs are

Proofs of specific cases. is that at the end of part C when asked what he

now knew about the statement that he didn't know before, he wrote "I

think that it is probably true." According to his conception the

"probably" isrwarranted, he has seen evidence for a number of specific

cases, But no general proof.

How would Larry react if he was given a deductive proof of a statement

complete with a diagram and then was given another diagram that satisfied

the conditions of the statement (e.g. an isomorphic diagram with

different labels)? Would he consider it necessary to write another proof

with the exact same statements? The evidence from our interview suggests

that he would. Unfortunately, we were not able to test out this

hypothesis.

CONCLUSION

As pointed out in the introduction, one of the key differences between

measurement and deductive proof is that deductive proof can prove

statements which hold for infinite sets, while measurement can only

. verify a statement within certain bounds for a finite set. It. was

,anticipatedthat some students would not understand that measurement is

only effective in^a finite number of cases. It was a surprise to find

student's who do not understand that deductive proofs hold for all

diagrams which satisfy the initial conditions. Larry's views make it

clear that the issue of generality and specificity is a fruitful one to

study..' Future research will investigate whether Larry's conception is

held by many high school geometry students.

The GEOMETRIC SUPPOSERS encourage the user to construct more than one
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diagram for a statement. For students like Larry, the SUPPOSERS' are an

especially valuable tool. It would be harder for his conviction to

survive a GEOMETRIC SUPPOSERS classroom than a traditional classroom

where it is rare to find two different drawings for the same statement.

Work on "diagnostic teaching" (Bell, 1983; Bell, 1986) also suggests

that classroom activities which challenge students' misconceptions about

measurement and proof (like Larry's) and conflict-discussions which

examine the similarities and differences between these two methods for

verification may be effective in eradicating student misconceptions.

These sorts of activities may also promote long term learning which is

more successfully transfered to new mathematical domains.
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'DISCRETE' FRACTION CONCEPTS AND COGNITIVE STRUCTURE

M.A.(Ken) Clements and G.A. Lean
Deakin University P.N.G. University of Technology

Data obtained from investigating the 'discrete' fraction concepts of 59
students in Grades 4, 5, and 6 in three Papua New Guinea Community
Schools are analyzed. These data derive from three different kinds of
tasks, namely 'sharing' tasks, 'discrete' tasks involving formal fraction
language, and 'symbol manipulation'fraction tasks, all concerned with the
fractions 1/2, 1/4, and 1/3. While all 59 students were confident and
accurate when performing the 'sharing' tasks, they were much less
successful on corresponding tasks in the other two categories. It is
concluded that, in the teaching of fractions, reality-based 'sharing'
concepts should be linked with formal language, and both of these with
the symbolic manipulation of fractions. These links need to be firmly
established in the learners' cognitive structures.

1. INTRODUCTION

In November and December 1987 the authors administered three paper-and-pencil tests to 283

children in Grades 4, 5, and 6 in three Community Schools in different villages in Papua New

Guinea (PNG). We also interviewed, on a one-to-one basis, 59 of the children who had taken

the tests, the aim being to map the children's cognitive structures with respect to fraction

concepts, and especially concepts for the fractions 1/2, 1/4, and 1/3.

During the interviews children responded to a wide range of fraction tasks. This paper,

however, is solely concerned with analysing data pertaining to 'discrete' fraction tasks. (An

example of a 'discrete' fraction task would be to show a child 12 objects and to task him/her to

pick up one-third of them; by contrast, asking a child to shade one-third of a rectangle is an

example of a 'continuous' fraction task - see Clements & Del Campo, 1987.)

Hunting (1986, pp.212-213) has pointed out that traditional approaches to the teaching of

initial fraction ideas have been based, almost exclusively, on the partitioning of continuous

material (e.g. apples, cakes, and pies), and sections in school textbooks on fractions

incorporate mostly graphic material which shows regions partitioned into various fractional

units. This is probably true of the situation in Papua New Guinea (see, for instance, the

section on 'Fractions' (pp.65-72) in the PNG Department of Education's (1986) Community

School Mathematics 4A).

This, together with the fact that, while we were observing mathematics classes in the
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Community Schools which we visited, we noticed that children in Grades 4 through 6 were
often expected to be able to find the value of expressions such as '5/11 of 792', made us
wonder whether the children's cognitive structures included the verbal knowledge, the
imagery, and the memory of relevant episodes (Gagne and White, 1978) which would enable
them to make sense of the symbol manipulations which they were struggling to perform.
Therefore, we decided to attempt to map the cognitive structures of samples ofchildren in the
school with respect to fraction concepts, and to include within the investigation a special study
of the children's responses to discrete fraction tasks.

2. METHOD

Sample: 24 of the 59 interviewees constituted the only Grade 5 class at a small Community
School. Nine of the 24 students were female, and 15 male. Data from the pencil-and-paper

tests indicated that while these 24 students were spread across a wide spectrum of mathernaafal

ability, on the whole the class was above average in mathematical performance for Grade 5
students in Papua New Guinea. The other 35 interviewees (20 female, 15 male) were in
Grades 4, 5, and 6 (8 in. Grade 4, 16 in Grade 5, and 11 in Grade 6) at two larger Community
Schools (which were in the same PNG province, but in a different province from the first
school). Again, while these 35 students were spread across a wide range of mathematical
ability, the two schools which they attended are recognized, within PNG, as having high
academic standards.

The interviews were mainly in English. If the interviewers suspected that a child was having
difficulty in understanding the basic instruction for a task then an adult (usually a teacher) was
called on to present the task in the child's first language. In each of the three schools English
is the language of instruction.

The Discrete Fraction Tasks: The five different kinds of interview tasks which could be
regarded as 'discrete' (or in the case of the Equilateral Triangle Perimeter task, having both
'discrete' and 'continuous' aspects) are now described.

1. The Array Tasks, and the Coffee Lid Task: These tasks were based in the five
sets of objects shown in Figure 1. For the 4 x 3 array of blocks in Figure 6(a) interviewees

were asked to give the interviewer one-half (then one-quarter, then one-third) of the blocks;

similar requests were made for the objects in Figures 6(b) and 6(c); for the 2 x 4 array (Figure
6(d)) interviewees were asked to give one-half (then one-quarter) of the blocks; and for the 2 x
3 array (Figure 6(e)) they were asked to give one-third of the blocks.
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(a) a a D (b) (c) a a
®0o
D D
000

4 x 3 array of
identical blocks

12 identical marbles in
the lid of a coffee jar

(d)

CO DO0000
2 x 4 array of
identical blocks

(e)

0 0
CO 0 0
2 x 3 array of
identical blocks

O 0
O 0
0

4 x 3 array containing
8 identical blocks and
4 identical marbles

Fig. 1 : The array and coffee lid task materials

2. The Cups of Water Task Interviewees were shown the three identical clear plastic

containers in Figure 2(a), with one container full with water and two empty, and asked, 'What

fractions of the cups have water in them?' Then they were shown the situation in Figure 2(b),

and asked the same question. Depending on responses, the interviewer could ask further
similar questions (eg. with three containers full with water and one empty).

(a) (b)

Fig. 2 : What fraction of the cups have water in them?

3. The Equilateral Triangle Perimeter Task: Interviewees were given an A4 piece of
paper on which three equilateral triangles, each with vertices labelled A, B, C, were drawn

(see Figure 3). They were told that Mary wanted to move around the triangle, starting at A and

going through B, then through C, before arriving back at A again. While these instructions

were being given the interviewer demonstrated the meaning of what was being said by
pointing to a triangle. Then the interviewee was asked to indicate on the triangle where Mary

would be when she had moved 1/2 (then 1/4, then 1/3) of the way around the triangle.

.aril t.3C
01.4:rection

A

Fig. 3 : Moving around thetriang2 34
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This perimeter task has both discrete and continuous aspects : continuous, because it involves

the continuous quantity, length; but discrete because the triangle has three sides.

4. The Symbol Manipulation Tasks: Interviewees were asked to work out the answers
to the following three sums, which were written on a piece of paper.

1 of 12 = 1 x 12 = T x 12 =4 3

5. The Discrete Sharing Task: Interviewees were given 12 marbles and were shown
four stick-figure pictures of 'friends'. They were asked to share the marbles amoung the four

friends so that each got the same number of marbles. The task was then repeated with two

(then three) stick-figure pictures of friends.

3. RESULTS

1. The Array and Coffee Lid Tasks: Table 1 shows the percentages of interviewee's
giving correct responses on the five tasks, for each of the fractions 1/2, 1/4 and 1/3.

Table 1 Percentages of Correct Responses on 'Expressive Discrete' Array and Coffee Lid

Tasks (n = 59 , children in Grades 4 through 6)

Task 1/2
Fraction

1/4 1/3

1. 4x 3 array (12 blocks) 44% 17% 29%

2. 12 marbles in coffee lid 41% 10% 17%

3. 4 x 3 array (8 blocks, 4 marbles) 39% 12% 17%

4. 2 x 4 array 41% 25% -*

5. 2 x 3 array - * - 11%

*means the task did not apply to the fraction

It can be seen that most interviewees did not demonstrate an expressive understanding of the

request to give the interviewer 112 (or 1/4, or 1/3) of a small set of objects. The most common

error was for students to'give 2, 4, and 3 blocks in response to the request for 1/2, 1/4, and
1/3 of the blocks, respectively. In fact, 25% of all requests for 1/2 of a set of blocks yielded

the response '2; 62% of all requests for 1/4 of a set of blocks yielded the response '4; and
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65% of all requests for 1/3 of a set of blocks produced the response '3'. The concepts of 1/2,

1/4, and 1/3 are inexorably linked with the numbers 2, 4 and 3, respectively, in many

children's cognitive structures.

2. The 'Cups of Water' Tasks: Table 2 shows the percentages of interviewees giving
correct responses to the two set tasks in this category. Interviews suggested that children had

difficulty trying to reconcile the displays of cups and water with their concepts of fractions.

For most interviewees this was a novel, and confusing idea. Many students just guessed an

answer. They were asked to name a fraction so they said '1/4', or '1/2', or whatever first

came into their head.

Table 2 Percentages of Correct Responses on the two 'Cups of Water' Tasks (n=59)

Task
Percentage Most Common

Correct Error(s)

1. One cup of water, and two empty cups: 1/4 (37%) of interviewees.
"What fraction of the cups have water m 33% gave this response)

them?" (Correct response:1/3)

2. Two cups of water, and one empty cup:
"What fraction of the cups have water m
them?" (Correct response : 2/3) 23%

1/3 (20% of interviewees
gave is response)

131/2 (13th%) 1/4 (%)

3. The Equilateral Triangle Perimeter Task: The percentages of correct responses on
this task for the fractions 1/2, 1/4, and 1/3 were 14%, 5%, and 7%, respectively. Even when

correct responses were given, in almost all cases they were obviously guesses. The cognitive

structures of the interviewees clearly did not link the perimeter of a triangle with fractions.

One might have reasonably expected that on this task a fairly high percentage of correct
responses would have been given for the '1/3' task, but this expectation was not realized.

4. The Symbol Manipulation Tasks: Table 3 shows the percentages of correct
responses for the three tasks in this category, and the most common errors on the tasks.
Written transcripts produced by the interviewees on these tasks often revealed a desire to
'cancel'. Usually, however, what was done suggested a serious lack of understanding. Thus,

for example, a Grade 5 boy wrote:

of yi16 16 I x ylic= 15 x =14

This boy knew he had to cancel, but he had no idea of what cancelling meant.
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Table 3 Performances on Symbol Manipulation Tasks (n=59)

Task Percentage Most Common
Correct Errors

of 12 = 51% '6' 7 students gave this response
'8' 5 students gave this response
'4' 3 students gave this response

x 12 = 48% '3' (5 students gave this response)

x 12 = 20% '3' (5 students gave this response
'48' (4 students gave this response)

'5. The Discrete Sharing Tasks: When asked to share 12 marbles equally among four
'stick-figure' friends all 59 interviewees quickly gave 'the correct answer. Thirty used a

'one-for-one' procedure, building up piles of marbles on the pictures of the friends, and the

other 29 immediately picked up three marbles for each friend. No mistakes were made on the

other two sharing tasks (involving sharing 12 marbles among 3, then 2, 'stick-figure' friends).

Usually, if an interviewee used a 'one-for-one' procedure for the first sharing task, among
four friends, then he/she used the same procedure for the other two sharing tasks.

4. ,DISCUSSION

The preceding data analyses indicate that the reality-based sharing concepts which all the

interviewees possessed were rarely linked in the children's minds with the formal language of

fractions or with the symbolic manipulation of fractions; also, formal language of fractions

was not linked with symbol manipulation. Students in Grades 4, 5, and 6 were spending

large amounts of classroom time working with fraction symbols but did not link what they
were doing with reality or the formal language of fraCtions.

This realization prompted us to carry out the analysis shown in Table 4. This Table-shows,

for both 1/4 and 1/3, those who (1) correctly performed symbol manipulation tasks and both

the first 4x3 (with 12 identical blocks) array task and the Coffee-Lid task; or (2) correctly

performed one, but not both of the symbol manipulation and the two .12-object tasks; or (3)

performed neither the symbol manipulation nor the two 12-object tasks correctly.

Clearly, from Table 4, hardly any of the 59 interviewees associated the symbol manipulation

tasks (which were much easier than those they were being asked to do in class) with tasks
which required them to identify 1/4 ( or 1/3) of a set of 12 objects.
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Table 4 Performance on Symbol Manipulation and Two 12-Object Tasks (n=59)

Comparison
1/4 1/3

Number in Comparison Number in
Category Category

' i of 12 = correct,
and both corresponding
12- object tasks correct

2
' x 12 = ' correct,
and both corresponding
12- object tasks correct.

' 'of 12 = ' correct, but either 3 x 12 = ' correct, but either
one or both of the corresponding 27 one or both of the corresponding 27
12- object tacks incorrect. 12- object tasks incorrect.

' 4.of 12 = ' incorrect,
but both corresponding
12-object tasks correct.

3
' a x 12 = 'incorrect,
but both corresponding
12-object tasks correct.

8

' 1 of 12 = ' incorrect, 3
i. x12 = ' incorrect,

and either one or both of the 27 and either one or both of the
corresponding 12-object corresponding 12-object
tacks incotrect tasks incorrect

23

TOTAL 59 TOTAL 59

Almost one-half of the interviewees correctly stated the values of ' a of 12= ' and ' 3 x 12= '

yet did not respond correctly to the corresponding array and coffee lid tasks. A few

interviewees performed the latter 12-object tasks correctly, but gave incorrect answers to the

symbol manipulation tasks. Many coulddo 'tither. Significantly, all had,.no trouble sharing 12

objects equally among 4 (or 3) 'friends'.

We believe the implications of our analysis represent a powerful indictment of prevailing

practice in the teaching of fractions. And we would be more than naive if we thought that what

we have found, in three PNG Community Schools is not more or less true around the world,

wherever schooling occurs.

Teachers, textbook writers, and mathematics curriculum developers must plan programs which

link familiar real-world concepts (e.g. 'sharing'), with corresponding formal mathematical

language (e.g. 'one-quarter of), and with symbol manipulation (e.g.' of 12 = '). This is

illustrated in Figure 4. We would comment, too, that the ideas implicit in Figure 4 certainly do

not apply only to fraction concepts (see Lean, Clements, eDel Campo, in press, where the

ideas are applied to arithmetic word problems).

Providing classroom experiences which assist students to make the cognitive links indicated in

Figure 4 requires some understanding of children's minds, and knowledge of the effects on

the children of previous learning experiences.

238



222

Fig.4 : Establishing links in cognitive structure

While in this paper we have concentrated on the 59 interviewees' knowledge of discrete
fraction concepts, in fact our data base contains more information on their continuous
fraction concepts than on their discrete fraction concepts. We are currently preparing a larger

report covering all the data : however, we should say, here, that our overall picture indicates

that, as a result of their schooling, the 59 interviewees did not associate formal fraction-
language with discrete sets of objects. This became clear when we asked them to dravi a
picture of .'one-half (then 'one-quarter', then 'one-third'). Fifty-eight of the 59 students
'chose to reprdent each fraction as a sub-area of a circle or a square - the other student chose an

eqilateral triangle. The idea of representing a fraction as a subset of a larger set of objects
apparently did not occur to anyone. This is the kind of knowledge which program developers,

and teachers, need to have.
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ALGORITHMIC THINKING OF DEAF PUPILS

REPORT ON A THREE YEARS CURRICULUM PROJECT

Elmar CohorsFresenborg, Universitat Osnabruck

Abstract:

In the following we report on the curriculum project
"Algorithmisches.Denken im Mathematikunterricht mit
Hbrgeschadigten" (algorithmic thinking in mathematics
lessons. of deaf pupils), which has been run under our
scientific supervision by the ministry of 'education and the
ministry of social affairs in our state. Divergent from the
usual role of research we were in charge of the inventing
of didactical situations and teaching methodology. In a'
smaller amount we made some investigations on the pupil's
process of algorithmic concept formation. We did this in'a
close cooperation with "Forschungsinstitut fUr Mathematik
didaktik e.V. Osnabruck". We are obliged to this research
institute for mathematics education for an importand

. progress in the theoretical framework (Schwank 1986).

INTRODUCTION

The curriculum project with deaf pupils, which we are presenting in the,

ibllowing paper, his two roots: one in mathematics education and one in

cognitive science.

In mathematics education we have a long tradition in developing

materials and lesson courses by which even primary pupils get an' insight

into the understanding of fundamental ideaa concerning automaticaly

running processes and programming computers.

In cognitive science we had a hypothesis on the value of nonverbal_ forms

of representing mathematical concepts arrising from the theoretical and

experimental analysis of pupils' concept formation processes. This led

us to the idea of testing the theory with deaf pupils as a kind of

crucial experiment.

Concerning the research on deaf pupils one may find in cognitive science

some research on language acquisition of deaf but not on their
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mathematical concept formation processes. Similarly, there is no

research reported in the field of mathematics education concerning the

deaf, as far as it can be seen for example in the abstract book of the

International Congress on Education of the Deaf held in Hamburg 1980 or

in the recent volumes of international journals in mathematics education.

Therefore the curriculum project on which we are reporting is an

exception (Cohors-Fresenborg 1987b).

Since 1979 there has been done research concerning the question of

algorithmic concept formation of deaf pupils by the group 'foundations

of mathematics and mathematics education' at the university of

OsnabrUck. The investigations with primary pupils led to the result that

deaf pupils

are able to construct and analyse algorithms using the didactical

material'dynamic mazes' (which is explained below) on a considerably

high level compared with healthy pupils of the same age. The

investigations were extended to the field of the fundamentals of

computer programming using the model computer registermachine. As a

consequence of this successful work the ministry of science of Lower

Saxony has supported a pilot study from 1981 to 1983. One result was the

hypothesis that the remarkable high level of the deaf pupils in

constructing and analyzing automata networks was based on their

experience in the organizing of actions, so that by a consequent

developement of those abilities there could be an intuitive basis for an

understanding of fundamental mathematical ideas (Cohors-Fresenborg/

StrUber 1982).

HYPOTHESIS

The following hypothesis was presented as the basis of a three-years-

curriculum project:

By changing the philosophy of mathematics lessons using the intuitive

basis of algorithms it is possible, that deaf pupils are able to

understand complex mathematical concepts from which they are excluded by

the kind of mathematics curriulum which iscused today.
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We were convinced that the reason for this can be seen in the fact that

the philosophy of pure mathematics is from a philosophical point of

view based on a languageorientated way of mathematical concept

formation.

Our curriculum project should show that it is possible to teach the

usual contents of school mathematics (algebra and functions) using

algorithms as a fundamental idea so that deaf pupils can reach a

performance which is comparable with that of healthy pupils in a

middlerange of ability in secondary schools.

Using the deaf pupils' understanding of fundamental algorithmic concepts

it should be possible to teach programming of a high level language like

PASCAL. This should open to them better chances in finding more

qualified jobs than they could find up to now.

The center of our research was the constructing of curriculum elements

using the idea of algorithms. We were convinced that we could only reach

our high level aims, if we gave preference to the constructing of

suitable mental models (JohnsonLaird 1983) for algorithms, and not by

teaching mathematical facts..

CURRICULUM PROJECT

From 1984 1987 there was made a curriculum project in 'the center for

the education of deaf pupils in Osnabruck. Our job was the scientific

consulting. We understood our job as the task to develop curriculum

elements and the suitable teachingmethodology.

During our project there have been taught two classes:

One class beginning with grade 8 (up to the end of grade 10), and one

class beginning with grade 6 (up to the end'of grade 8).

Didactical material

The use of the material 'Dynamische Labyrinthe' (Dynamic Mazes) and the

modelcomputer 'Registermachine' played an important role . Both of them

have been used before in other curriculum projects in primary and
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secondary schools, so that there existed quite a lot of experiences

concerning the healthy pupils.

In 1974 we started to develop a didactical material "Dynamische

Labyrinthe" (Dynamic Mazes) with the aim to give pupils even at primary

level an understanding of the fundamental ideas which are necessary to

understand automaticaly running processes and programming computers. The'.

mathematical analysis of toy railway networks, in which only one train

may run which itself changes all the points automatically on his run,

leads to the idea that such a railway network may be regarded as a

sequentially running network of simple automata. The points are regarded

as a finite automaton with two states (left and right). The box

"Dynamische Labyrinthe" contains such mechanically working points,

flip flops and counters which can be fixed on a board and can be

connected by simple bricks (straightes, curves, crossings, junctions) to

a network (CohorsFresenborg 1978).

We have constructed a lesson course (Cohors Fresenborg /Finke /Schiitte

1979) consisting of about 16 lessons, in which pupils learn to build

networks as concrete representations of the mathematical idea of

periodically counting automata. Those are used in daily life in sorting

machines or in selling machines for tickets and stamps. These curriculum

elements were tested with several thousand pupils mainly of grade five.

It was really astonishing, how successful quiet a lot of these young

pupils were in constructing and anylyzing such automata networks.

The registermachine was invented as a microworld to understand

imperative programming languages like PASCAL (CohorsFresenborg 1987a).

It fits to the idea of computing networks constructed with .the material

dynamic mazes. The registermachine has been used to introduce the

concept of function on the basis of algorithms (COhorsFresenborg/Griep/

Schwenk 1982).

Textbook

During our project we have worked out a small textbook for the pupils

and a detailed handbook for, the teacher (Goldberg 1987). Both are use

our experience teaching the concept of function on the basis of

algorithms (CohorsFresenborg/Griep/Schwank 1982). A deeper insight into

the valuue, which play the different forms of representations for the
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construction of suitable mental models in the deaf pupils' mind, can be

got from'the design of the two clinical interviews (Cohors- Fresenborg

1987b, appendix page U3-U32).

SCIENTIFIC EXPLANATIONS

In the following we will try to explain the pupils' success in our

curriculum project. The research on algorithmic concept formation has

worked.out three dimensions: the role of different forms of

representation (Cohors-Fresenborg 1986) as well as the.existance of

individual different cognitive structures (Schwank 1988) and cognitive

strategies of pupils (Kaune 1985, Marpaung 1986).

The material 'dynamic mazes' plays an important role as a non-verbal

communication devicein the sense of Lowenthal' (1982). The non-verbal

aspect of mathematical concept formation is one important reason for the

pupils' success. A remarkable contribution to understand the role of

language in the procss of algorithmic and mathematical concept.

formation is the work of Lowenthal and Saerens with an aphasic child

. using dynamic mazes and formal systems (LoWenthal 1985). Our work in

curriculum construction was supported by first attempts to explain the,

pupils' process of 'concept formation by research in the field of

cognitive science.

In the meantime the different forms of representing algorithmic concepts

are further analysed (' Cohors- Fresenborg 1986). Especially after 'the

investigations of Kaune (1985).these forms are now not regarded to form

a hierarchy as it has be seen before. The use of dynamic mazes for .

'concept formation is not only explaned.by its non-verbal Approach but

merely by the fact, that constructing computing networks with the

dynamic mazesimplemenis a philosophy of thinking which fits in a very .

good manner to the cognitive structures of some pupils (Schwank 1986).

The dynamic mazes support a thinking in the terms, of functioning

(,functional reasoning), on the contrary a succesful use of dynamic mazes

needs a certain ability in this kind of thinking. Only by this it can be

explained that there are some pupils which could'nt solve debbuging-

problems which were presented.cn the form of dynamic mazes, but'they.
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were able to solve the analogous problem which was presented in the form

of formal computer programs for the registermachine. These individual

preferences can be developped in such a manner that pupils by themselves

start a procedure to translate the problem from the computing network

into a formal program, solve it in this representation and translate it

back to the world of computing networks. That means, those pupils are

more successful in solving problems using the formal representation of a

computer program, which fits better to predicative thinking than the

computing networks, allthough they had to organize twice a translation

process. For the first time such a phenomenon was reported by Marpaung

(1986, page 98).

Mathematical concepts are defined and learned inside a framework of

concepts which occur in an axiomatic system of mathematics as free

varibals and for which there must be decleard meaning by interpretation.

From the psychological point of view there must be given evidence for

these fundamental concepts. In the usual way of constructing mathematics

these fundamental concepts are of predicative or set theoretical nature;

the other mathematical concepts, for example the'concept of function,

are then introduced by explizit definitions. Concerning the field of

teaching and learning concepts the verbal orientated predicative way of

concept formation fits to this kind of introducing mathematical concepts.

On the opposite the concept of function is fundamental in a constructive

foundation of mathematics which from its philosophy fits to the use of

computers in mathematics. In this case the basis of evidence is a

thinking in the terms of organizing actions and of functioning.

Concerning the enumerable mathematics both approaches are equivalent by

principle. But this does not mean that they are equal from the

psychological point of view. These different possibilitys of foundation

of mathematics show, that it is very naive but often found that there

exists a unique mathematical kernel of a concept. It may be quite useful

inside a given framework of mathematical foundations but it is of no

value if one is concerned with a new orientation of the fundaments of

mathematics curriculum.

From the cognitive science point of view Schwank (1986) has pointed out

that corresponding to these two different mathematical approaches there

exist analogous differences in the cognitive structures of human
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beeings: the predicative versus the functional structure of thinking.

Casestudies with 9 of the deaf pupils have shown, that the destinction

between pedicative and functional cognitive structure is useful to

explain the observed individual differences in the process of concept

formation (CohorsFresenborg 1987b, appendix page U39U42). In a

casestudy with the deaf boy Dietmar it could be shown by Schwank (1986),

that there exists a deaf, who preferes extremely the predicative

cognitive structure, allthough language seems to be the natural tool to

use it. This boy therefore was all the more handicapped,because his

cognitive structure needs an elaborated language. The teachers regarded

him as not so intelligent. And in our action orientated course using

'dynamic mazes he was not successfull (because ,as we know now, we used

them according to functional thinking). But in the casestudy it could be

shown, that this boy could really understand the programming language of

the registermachine, when this was introduced in a way according to his

predicative cognitive structure. In the following it was possible to

leed him to a remarkable understanding and success in algebra by a

sophisticated use of denominations and formal symbole.

This example shows, that the role of language in mathematical concept

formation processes, especially of deaf, must be further analyzed.
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THE EFFECT OF ORDER-CODING AND SHADING OF GRAPHICAL
INSTRUCTIONS ON THE SPEED OF CONSTRUCTION OF A

THREE-DIMENSIONAL OBJECT

Martin Cooper
.University of New South 'Wales

ABSTRACT

There are many situations, both in
\t
he classroom and in

real life, in which a three-dimensional object must be
constructed from diagrams. ,

In the present research, the efficiency of high school
students was examined as they constructed a; SOMA cube from its
components, using instructions consisting of different types
of isometric drawings. (The SOMA cube pdzzle consists of
seven polycubical pieces which fit together to form a cube.)
The graphical instructions consisted of an 'exploded ,ilew. and
a Sequenced set of views, each showing a new component being
added to the structure. Each type of instruction was
presented in a "clear" form, so that all faces, edges and
vertices had the same prominence, and in a form in which
drawings were "shaded" .in such a way as to suggest depth. A
cue consisting of a clear exploded drawing, which was coded
for order of operation, was provided 'also.

The sample consisted of 48 Year 7,.42 Year 9 and 27 Year
11 boys, subjects being examined one at a time. The proportion
of Year 7 subjects who were able to complete the task
successfully was so small that no compariso s among the mean
times to successful completion were made for this age-group.
For the other years, the results suggest th,.t sequenced
drawings are more effective than exploded views that are not
coded for order. For Year 9, all order-coded illustrations
taken together (whether exploded views or not) were found to
be more effective than both illustrations that were not coded
for order. Again, for Year 9 but not for Year 11 subjects,
the clear exploded view that was not coded for order was not
as efficient as the clear, order-coded exploded view. For
neither age-group was any difference in effectiveness found
between clear illustrations and shaded illustrations.
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THE EFFECT OF OIRDER-CODING AND SHADING OF GRAPHICAL
.INSTRUCTIONS ON THE SPEED OF CONSTRUCTION OF A

THREE-DIMENSIONAL OBJECT

BACKGROUND

Martin.Cooper
Uni,krersity of New South Wales

There are many situations, both in the classroom and in
real life,, in which a three-dimensional object must be
constructed from;diagrams. Such diagrams may be in the form
of plans or elevations ("orthogonal views" or "sections"),
they may be perspective or isometric drawings, or they may
take the form of "exploded views" of the sort found in
automobile handbooks.

In the construction industry, plans and elevation's are
common formatsfor transmission of information about the
object being manufactured, and in Geography, maps which
represent ele'ation as well as layout are used extensively.
In Mathematics classes dealing with topics such as mensuration
of three-dimensional objects and solid geometry, however,
isometric o5 perspective drawings tend to be used most often
(Goddijn,and Kindt, 1985). Instructions which accompany'
household ,"assemble-it-yourself" articles, also, frequently
use isometric or perspective drawings as illustrations;
sometimes such drawings are coded so that the user knows the
order in; which the parts are assembled.

Recent research (Cooper and Sweller,,in press) has shown
that Grade 7, Grade 9 and Grade 11 students find it much
easier to assemble.cubes into simple polycubical structures
when following instructions which include protOtypes or
isometric drawings than from instructions whith use plans or
elevations. Furthermore, they found no difference in
efficiencY between the use of isometric drawings and
prototypes of the structures to be assembled. This finding is
in accord with Metzler and Shepard (1974) who suggested that
isometric drawings are internalized in the same way as the
structure itself.

In the present research, we examined the speed with which
high school students could construct a solid from its
polycubical components, When using different types of
instructions based on isometric drawings. When employed with
instructions for the assembly of an object, such drawings may
carry an indication of the order in which each component is
put into position. Although such "order coding" provides
additional information, and may therefore increase cognitive
load, it seemed probable that the format would be more
efficient because such additional information allows better
management of the task and thus reduces the need to employ
trial-and-error methods. Exploded views are, of course,
isometric in nature. It was conjectured that instructions
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using order-coded exploded views would be more efficient than
those in which the diagrams were not coded in this way.

Another type of instruction, in which both isometric
'drawings and order coding are combined, takes the format of an
ordered series of views, each showing a new component being
added to the structure (see Figure 4). It was conjectured
that this type of instruction would be more efficient than
that using the exploded-view type of isometric drawing.

Isometric drawings may be "clear" in the sense that all
faces, -edges and vertices have the same prominence (see, for
example, Figure 4); on the other hand, they may be "shaded" in
such a way as to suggest depth (as may be seen in Figure 5).
Shading of this sort was used by Gaulin (1985) and by Izard
(1987). As there appears to be no research evidence that
either shaded or unshaded drawings are the easier to
interpret, one may ask why such a device is employed at all.

METHOD

Materials
The materials consisted of the seven components of a

standard SOMA cube and five cards, each bearing an
illustration. (The SOMA cube puzzle consists of seven
polycubical pieces which fit together to form a cube.) Each
illustratiOn was designed to accompany the following
instructions:

These wooden pieces fit together to form a cube. Can
you put this puzzle together? The drawings on this
card are provided to help you.

The respective cards and the format of their illustrations
were as follows:

Card I: Clear, uncoded exploded view (see Figure 1)
Card 2: Shaded, uncoded exploded view (see Figure 2)
Card 3: Clear, order-coded exploded view (see Figure 3)
Card .4: Ordered sequence of cumulative isometric drawings;

clear. jormat (see Figure 4)
Card 5: Ordered sequence of cumulative isometric drawings;

shaded format. (see Figure 5)

Procedure
Samples were drawn from grade 7, grade 9 and grade 11

classes in a large high school. Subjects were examined one at
a time. Each subject was seated at a table and presented with
the seven SOMA cube components and an illustrated instructions
card which was randomly selected from the five available.

The researcher recorded the time taken from the instant
the subject viewed the material to the instant when the task
was completed. A time of 10.00 minutes was recorded for
subjects who had not completed the task by that time.
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Figure I Clear, Uncoded Exploded View

Figure 2 inaded, '.ncoded Exploded View

Figure 3 Clear, Order -Coded Exploded View
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RESULTS

For.each grade-type combination, the number and
percentage of subjects who were able to complete the task
correctly in a time not exceeding ten minutes is shown in
Table 1.

Table 1 Numbers and percentages able correctly to complete the task

grade 7 grade 9 grade 11
card type of illustration Nn%Nn. 11)In%

1 exploded view (clear) 8 6 75.0 9 7 77.8 7 7 100.0
2 exploded view (shaded) 7 3 42.9 9 7 77.8 6 4 66.7

3 order-coded exploded view 8 '2 25.0 9 8 88.9 6 6 100.0

4 sequenced drawings (clear) 9 5 55.5 8 7 87.5 6 4 66.7

5 sequenced drawings (shaded) 8 3 37.5 9 9 100.0 6 6 100.0

N: number attempting task
n: number succeeding at task

Because the proportion of Grade 7 subjects who were able
to complete the task successfully was so small, it was decided
not to make any comparisons among the mean times to successful
completion for this sample.

The number of subjects in Grade 9 and Grade 11
successfully interpreting each type of illustration and the
mean and estimated standard deviation of their times to
completion of the task are given in Table 2.

Table 2 Means and estimated standard deviations of times to
successful completion

card. type of illustration
Grade 9

.n mean sd

Grade 11
n mean sd

1 exploded view (clear) 9 5.71 2.53
2 exploded view (shaded) 9 4.75 2.22

3 order-coded exploded view 8 3.20 2.38
4 sequenced drawings (clear) 7 2.80 1.83

5 sequenced drawings (shaded) 9 3.74 2.58

n: number succeeding at task
sd: estimated standard deviation

7 2.88 0.96

4 4.16 1.78

6 3.42 1.79

4 2.11 1.42

6 1.94 1.07
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It was expected that

1. sequenced drawings would be more effective than
exploded views:

2. illustrations indicating order of operations
would be more effective than those not showing
order;

3. 'shaded' illustrations would be more effective
than clear illustrations;

4. the order-coded clear exploded view would be
.more effective than the clear exploded view
bearing no indication of order of operations.

Contrasts corresponding to the above planned comparisons were
therefore defined as follows:

contrast. 1: average of means for Cards 1 and 2 (non-order-
coded exploded views) minus average of means
for Cards, 4 and 5 (sequenced drawings)

. contrast 2: average of means for Cards 1 and 2 (non-order-
coded .exploded views) minus average of means
for Cards 3, 4 and 5 (order-coded exploded view
and sequenced drawings)

contrast 3: average of means for Cards 1 and 4 (clear
exploded view and clear sequenced drawings)
minus average of means for Cards 2 and 5
(shaded exploded view and shaded sequenced
drawings)

contrast. 4: mean for Card 1 (non- order -coded clear exploded
view) minus mean for Card 3 (order-coded
exploded view)

The contrast'estimates and their estimated standard.
errors are presented in Table 3.

Table 3 Contrast estimates and their estimated standard errors

contrast

1

2

3

4

*p<0.05

Grade 9 Grade 11

contrast
estimate

estimated
std. error

contrast estimated
estimate std. error

1.961

1.98*

0.01

2.51*

'0.81
0.73
0.81

1,14

1.49* 0.63

1.03 0.56
0.55 0.63

0.54 0.78
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The estimates of contrasts 1, 2 and 4 are significantly
different from zero at the 0.05 level for Grade 9; for Grade
11, only contrast 1 shows significance.

The results of the above statistical analysis suggest
that instructions using sequenced drawings of the type
illustrated in Figures 4 and 5 are more efficient than those
using exploded views that are not coded for order. For Grade
-9, all order-coded illustrations taken together (whether
exploded views or not) were found to be more effective than
both illustrations that were not coded for; order. Again, for
Grade 9 but not for Grade 11 subjects, the clear exploded view
that was not coded for order was not as efficient as the
clear, order-coded exploded view.

For neither grade was any difference in effectiveness
found between clear illustrations and shaded illustrations.
This result may be explained in terms of Metzler and Shepard's
statement that isometric drawings of three-dimensional
polycubical structures are internalized-as if the structure
itself were being viewed, if a clear isometric drawing, is
as effective. as the structure, then a shaded.isometric drawing
can hardly be more effective. This finding may not hold, of
course, for illustrations of more complex structures.
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NEW CONTEXTS FOR LEARNING IN MATHEMATICS.

Kathryn Crawford

The University of Sydney.

This paper presents a work in progress report of an

exploratory study investigating the initial responses of 25
four year old children to a modified version of LOGO and the
relationships between learning behaviour and the social
context in which learning occurs. The research forms part

of a wider study, involving 450 families, of the social

context of mathematics learning in early childhood. A

description is given of the patterns of response by the

children and gender differences in interaction with

computational medium are discussed. The results of the
study indicate that the effects of socio-cultural factors

are heightened in informal learning situations where self
directed activity is encouraged. Also, that computational
media are a potentially powerful educational tool when used
to structure incidental learning.

In developed countries, increased computer use has resulted in both

qualitative and quantitative changes in the information available to all

sections of the population. Computers and computational media provide

new objective and social contexts in which young children may acquire

mathematical knowledge and use it in purposeful activity. There is a

need for careful investigation of the changing contexts in which

learning in mathematics occurs.

An interactive approach to cognitive activity.

There is increasing acceptance among cognitive theorists that

children construct their own knowledge through reflective activity

associated with their experience of the objective and social

environments. Constructivist theorists (for example, Cobb (1986) and

Duckworth (in press)) have recently described this process in some

detail. Cobb (1986) describes the interaction between perceptual

information and prior knowledge as an individual observes mathematical

aspects of reality as follows:

Mathematical structures are not apprehended, perceived,

intuited or taken in, but are instead reflectively abstracted
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from sensory motor and conceptual activity. Consequently the

adult observer who "sees" arithmetical knowledge "out there"

is consciously reflecting on structures that he or she has

imposed on reality.

'Cobb and Duckworth, like Piaget (1953), view cognitive development as a

generative process in which a child adaptively responds to experience of

the objective environment.

Some soviet psychologists ((Luria (1973), Vygotsky(1978),

Leont'ev(1981)) and Olsen (i987) have placed rather more emphasis on the

relationships between cognitive and social acts, particularly in

relation to the development of abstract concepts such those in science

and mathematics. Luria (1973) and Leont'ev (1981), in particular, ,have

explored the ways in which cognitive activity is constrained by the .

social context as well as physical aspects ofthe environment. Crawford

(1986), in a study of children's mathematical behaviour, found some

evidence supporting their pOsition. It appears that differing cognitive

functions are used to process information according to how an individual

perceives his/her needs and interprets the goal of a task. For example,

if a task is perceived'as involving self directed, creative activity,

then metacognitive processes are likely to be used to direct conscious.

reflection and critical evaluation of efforts to "make sense of" a

situation. In contrast, if the social context is interpreted as

requiring the following of directions, an individual concentrates on the

use of cognitive processes associated with accurate imitation. The

latter processes are not normally available for conscious reflection.

Luria (1982) states that the use of different functions results in

qualitatively different epistemological outcomes. Conscious reflection

is associated with concept_ development. Careful and repeated imitation

results in well automatised routines that are not easily accessable for

conscious review.

The subjects in Crawford's (1986) study were flexible about

adapting their behaviour when the social context for mathematical

problem solving was explicitly redefined. However, in many elementary

school classrooms in Australia there is an implicit (and often explicit)

requirement to follow the directions of the teacher. Such a social
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context mitigates against purposeful cognitive activity. in. mathematics.

New contexts for learning.

Booth (1984) has described how the spontaneous pattern making of

young children with paint and paper is influenced by the physical

constraints (e.g. paper shape) of the activity. Technological

environments now make possible new contexts for learning and also imply

the need for new kinds of knowledge. Routine procedures are

increasingly a function of machines. There is less demand for humans to

accurately perform highly automatised skills. Higher order thinking -

planning, trouble shooting, and creative problem solving - are necessary

for future purposeful use of technology. Computational media also

provide new kinds of information. For example the dynamic visual

representations of abstract mathematical ideas available in ELASTIC

(developed by A.Rubin BBN laboratories) have not been available to

students of the past. Computers also provide new social contexts for

mathematical enquiry. Now a machine rather than an adult sometimes

serves as a source of information. Also, ideas represented on a screen,

as occurs when children use LOGO, are available for public scrutiny and

discussion. Finally, and most important, computational media are highly

structured and provide new constraints as the basis of incidental

learning during use.

Learning and computers at pre-school.

As part of a larger study of the social context of mathematical

learning in young children in 450 families, 25 pre-school children were

observed during their initial contact with a modified LOGO programme

(Little Logo). At the beginning of the programme the children's ages

ranged from 54 to 60 months.

The time spent at the computer was described to the children as

"drawing on TV" in an effort to encourage association with other

activities.in which free expression and-creativity were encouraged. The

children were explicitly encouraged to explore the new medium freely.

In keeping with the rest of the informally organised pre-school

programme use of the computer was not mandatory but during the twelve

weeks all children were encouraged to use the computer either singly or

in small groups. All but one child used the computer on a weekly basis.

An adult in attendance kept running records of the interaction for the
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first half of the twelve week programme and assisted when technical

difficulties were encountered. Technical information about the

programme was presented in three stages. First children were

introduced to the commands of the modified LOGO programme (R L F C then

B D U T H ?). After four weeks experience of using the commands and

observing the effects produced on the screen, children were encouraged

to use the same commands to direct a turtle robot on the floor. After

two sessions with the robot the children reverted to "drawing on TV".

Records were kept of the time spent by each child, knowledge of

commands (use of left and right were noted separately), evidence of

planning, whether the child initiated or followed ideas. Printed

records of the children's "drawings" were also kept. Under such

informal conditions the following consistent developmental sequence

emerged:

1. Initial random and impulsive experimentation with the

commands. In the new medium this stage appears similar to the

scribble stage described by Booth (1984).

2. Initial attention in purposeful investigation of the new

medium centred around the two features most obviously

different from the topogical constraints of paper and pencil.

These were: attemps to predict where the "turtle" was after

using the H (hide) command and also experimentation with

continuous use of F (forward) until the "turtle" reappeared on

the screen.

3. A gradually increased focus on the horizontal and vertical

axes. Horizontal and vertical lines usually represented the

children's first attempts to control direction. The terms

quickly became part of the vocabulary used to discuss the

effects obtained on the screen.

4. Isolated geometric shapes. Usually rectangles, squares,

triangles and "circles" (closed curves). This stage generated

considerable discussion about the repetitive use of the F

(forward), .L (left) and R (right) commands. Methods of

producing shapes of different sizes were exchanged and

discussed.
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5.Planned filling of the available space. For boys this

stage often involved use of geometric patterns in a manner

similar to that described by Booth (1984), for girls there was

less interest in repetition and more interest in detailed

representation of people and events.

The sessions in which the children used the turtle robot were of

interest. All children were initially startled'and delighted when they

discovered that the commands they had learned could be used to move the

turtle on the floor. The new experience was clearly associated

(particularly by the girls) with experience playing with soft toys and

dolls. A "house" and "shops" were quickly constructed with cardboard

boxes and the robot was moved about. There was a marked increase in

imaginitive play and planning with work on the video monitor after

children had had experience in controlling the turtle robot on the

floor. The robot was slow .and cumbersome and most soon got bored with

it. However the experience was very effective as a means of shifting

the children's use of the medium from experimentation to more planned

and extended activity.

There were several differences in the ways that boys and girls

approached the use of the computer. Sperber & Wilson (1986) would

describe the differences as differences in the "cognitive environments"

that boys and girls brought to the task. These can be summarised as

follows:

1. Greater initial enthusiasm for computer use by boys.

2. Boys were eager to explore the limits of the new medium by

themselves whereas girls initially requested assistance more

often. (girls showed greatly increased planning behaviour and

initiative when left without supervision.)

3. Once competence in controlling the medium had been

attained, there were qualitative differences in the kinds of

representation by boys and girls. In general girls attempted

to represent people and activities in as much detail as the

medium allowed, boys were more interested in exploration of

and rearrangement of the shapes they had created.
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By the end of the programme there were no overall differences between

boys and girls in enthusiasm for computer use or in knowledge of

commands. Most children were able to competently discuss their activity

in terms of distance, direction, horizontal/vertical, left/right, shape

and size. However, the qualitative differences in the use of the medium

resulted in different expressions of frustration with the limitations of

the restricted LOGO programme. Boys were most interested in the

'possibilities for translation (and in some cases notation) of shapes and

repetition of procedures. In contrast, the girls were able to clearly

articulate their frustration with limitations imposed by the L and R

commands (set at 30 degrees) and their need for more precision in

forming angles. The results support Leont'ev's notion that cognitive

activity is defined by the needs and goals associated with a subjective

interpretation of a task. The gender differences described above were

consistent with significant differences in parental expectations and

activity choice found in_the wider study.

An adult was in attendance for all sessions of the computer

activity for the first half of the programme. Although explicit

instructions were given that children should freely explore the medium

with a minimum of adult direction, it was clearly difficult to resist

the temptation to "help". Many children, girls in particular, actively

sought help and felt most comfortable in dependent learning situations.

The situation remained unresolved until illness resulted in the children

managing the computer activities by themselves for a week. There was an

increase in active discussion about the activities and in the planning

and complexity of the resultant "drawings". From that time, adult

assistance in the programme was reduced to one session per week.

Conclusions.

The results of this small exploratory study should not be

generalised. However, the study has highlighted the significant

influence of sociocultural experience on learning in informal settings

and the way in which computational media provide new and influential

contexts for incidental learning in young children. It is clear that

purposeful creative activity with computational media incidentally
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direct children's attention to mathematical aspects of the environment.

However, the socio-cultural associations and perceptions of

"appropriate" behaviour strongly influence the course of self directed

learning. Even at four years of age, gender differences in the .

"cognitive environments" that children brought to the activity were

evident. Boys and girls increasingly used the medium to achieve

different goals and to explore different interests. As a result, they

paid attention to and discussed reflectively different aspects of the

medium.

The study raises a number of questions for future research. Some

of these are:

Are the socio-cultural effects associated with achievement in

mathematics exacerbated or ameliorated by less formal settings

and self directed mathematical enquiry?

Can computational media be used to enhance mathematical

understanding while individuals persue their different goals

and interests?

How do the structures of a computational media influence

incidental learning during use by students?

With the increased use of micro-computers in schools and new

developments in educational software changes in both the social and

physical contexts of learning in mathematics seem inevitable. However

if these chnages are to have positive educational outcomes, there is an

urgent need for research directed at increasing our understanding of the

above questions.
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OUELOUES DEVELOPPEMENTS ASCENTS DES RECHERCHES
SUR LA DISCUSSION AUTOUR DE PROBLKNES
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HelAni NIKOLAKAROU
Twos PAOUELIER

U.E.R DE DIDACTIOUE DES DISCIPLINES, UNIVERSITE PARIS 7.

DISCUSSION ABOUT PROBLEMS :

RECENT TRENDS IN RESEARCH AND ANALYSIS

This study refers to the conception, the realization,
the observation and the. analysis of a teaching approach,

for mathematics, we called "Discussion -, About Problems"

(D.A.P.), and which was experienced for'two years (from

'85 to '87). It is based on the direction (by the teacher)

of a discussion among students (adults) about the

statements they make regarding a problem they must have

yet prepared.
The ongoing research focuses on analysis of video-

registered observations, and aims at determining

characteristics of D.A.P. and discovering some rules of

action and interpretation the. teacher uses when conducting

a discussion.
One of the results we obtained is that a procedural

description based. on "parenthesis" (sub-discussions) is

irrelevant. Hence, we are working on a new "theatrical".

point of view/ which is based on mathematical contents and

communicational side together.

O. INTRODUCTION

Comment penser une demarche didaotique qui puisse favoriser

l'aquisition d'un certain nombre de connaissanoes en mathematiques

(de divers niveaux), 'par l'interiorisation (individuelle) d'un debit
(coliectif)? La-conception thaorique, la miss en place, l'observation
et l'analyse d'une- telle demarche (qua nous avons appele "Discussion

Autour de Problemes" D.A.P.) sont l'objet d'une recherche mende
dans le oadre des seances de travaux diriges d'un enseignement de

remise 8 niveau pour adultes. A titre indicatif, le programme &Lute

aveo les oalouls sur les puiseanoes at les fonotions affines, et se

termine par lea coniques, l'integration et les nombres complexes (1).

(1) La lecteur pours& se faire uno ides do ce qua pout etre AIM seance di D. A.P. on se referent
la description militant lque qui figure en annexe Or 1 ) .
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Uri des souois fondamentaux de notre reoherohe our la D.A.P.
oonsiste a eviter, autant que possible, gue nos constructions
theoriques (a priori) n'alterent notre interpretation (a posteriori)
des observations. Toutefois, on ne pout faire un tel travail d'inter-
pretation comae si l'on etait vierge de tout a priori. Il importe
done d'eluoider au mieux notre theorisation initiale et son influence
sur la oonduite de l'experimentation et sur l'interpretation des
observations reoueillies. Pour eviter de "prendre nos &lairs pour des
realites", j.l faut mettre en rapport ce que nous voulions
(initialement) qu'il se produise, et ce quo nous pensons (maintenant)
ou'il est arrive.

Par ailleurs, la soientifioite dune experimentation didaotique
nous semble dependre, entre autres, du etatut accorde l'analyse des
decalages entre "intentions" (teller qu'on pout les reconstituer) et
"realisations" (connues par les observations et les analyses).
Considerer oes deoalages oomme une "derive" inevitable, qu'il
s'agirait de reduire par approximations suocessives, nous parait
risquer de tirer l'etude vers le domaine de l'innovation pedagogique.
Ce n'est pas un mal en soi, mais cola correspond a un affaiblissement
de la vigilance epistemologique (1) et*sort du domaine de la reoherohe
didaotique. Au oontraire, nous oonsiderons l'interpretation de oes
deoalages comae un moyen privilegie d'en connaitre autant our nos
intentions que sur les oontraintes externes (institutionnelles) et
internee (didaotiques) de la situation mise en jeu.

Encore faut-il disposer des moyens de prendre connaissance, de la
maniere la plus objective possible, du deroulement effectif des
seances ; ou, si l'on prefere, pouvoir passer du commentaire
l'analyse, o'est a dire a la comprehension de la "logique" des
discussions.

La reoherohe dune telle =Rhode d'analyse a commence des la
deuxieme armee de l'experience (1986-1987) et n'est pas terminee.
Toutefois a l'ocoasion de is phase initiale de oe travail d'analyse,
consistent a "decouper" les deoryptages, les problemes rencontres et
lee solutions envisagees nous indiquent quelques resultats oonoernant
les interpretations des situations de type D.A.P.

I DESCRIPTION PROCEDURALK

Nous avions voulu tester une methods d'analyse. des seances de
D.A.P. reposant sur le prinoipe "procedural" suivant

:

Une D.A.P. pout etre consideree comae une procedure
complexe de resolution d'un problems, procedure dont le
deroulement necessite d'acoomplir des tiches, dont oertaines
sent elle-memes des procedures complexes de resolution d'un
.sous - problems, et ainei de suite.

Ce prinoipe pourrait se sohematiser oomme suit

(1) En prenant ce terms dans le sena oil 1 emplolent Bourdieu et al. (1983)
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Propositions des &ix/tants. Pr Pr Pr Pr Pr
Sous-problemes: SP SP
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Sous-discussions
des sous-problemes
etc...

./

Discussion du
probleme P, au
cours de laquel le
apparaissent des
sous-problernes
SP

C'est cat emboitement de sous-discussions dans une discussion. qui
devant conatituer.un princ4e deocriptif permettant de representer
schematiquement (comme ci-dessus) lea D.A.P. sous forme arborescente.
.En d'autres termes, dans cette description, pour gerer la discussion
(ce qui. est la tache de l'enseignant) it fallait controler la

profondeur des "parentheses" (c.a.d. des sous-discussions de
resolution de sous-problemes). Ce terme de aparenthese* avait pour
origine, entre autres, l'interpretation epontanite des difficult6e
reellement ressenties pendant is gestion pratique des seances.

Loraqu'une discussion devenait "illiaible" pour le maitre et pour
les eleves, A cause d'un trop grand nombre de questions imbriquees
les unes dans lea autres, it etait tentant d'interpreter cola comma
l'"ouverture" (par l'enseignant) d'un trop grand nombre de
"parentheses".

Un tel schema reste A peu pros vide de sons tant qu'on n'en a pas
eluoide les mots-olefs ("discussion", "probleme", 'etc...) La place
manquant toutefois ici pour le faire, nous ne pouvons qua renvoyer is
lecteur 8 DROUHARD et PAOUELIER (1987) (ainsi qu'aux publications du
Groupe de Recherche sur la Didactique de l'Enseignement Superieur-
-cf. bibliographic- pour une presentation des situations de "Moat
Soientifique", qui presentent des points commune aveo oelles de
D.A.P.). Toutefois, figure en annexe (A2) un rappel de quelques-unes
des positions theoriquea qui sont A l'origine de notre &mar-cite.

Or ce schema deacriptif, qui reflete assez fidelement un atade
anterieur de nos conceptions de la D.A.P., s'est revels mal adapts A
la description du deroulemeht des seances.

1) Lorsqu'on essaye d'anaiyser un deoryptage salon ce schema, on
se trouve devant un certain nombre de discussions ne correspondent A
aucun sous-problems explicite. Pour sauver is description, on est
amene A supposer l'existence de sous-problemes hypothetiques.

2) Plus fondamentalement, cette premiere conception de la D.A.P.
etait caraoterisee par une relative "etancheite" des- niveaux
(mathematique, metamathematique, methodologique, etc...) Elle
supposait, en effet, plusieurs types de D.A.P. : discussion sur les
solutions mathematiques d'un problems mathematique, discussion sur
des methodes proposees on reponse A un probleme methodologique,
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De fait, les problemes sounds au Atudiants etaient censers ne
comporter qu'un ordre de difficulte h la foie (1). Cette premiere
.conception ne. prenait dono pas en compte la Tossibilite
d'interventions A plusieurs'niveaux an cours d'une mama disbussion.

Or, une remarque de methods, enoncee a un moment donne d'une
discussion portant our un probleme mathematique, pout d'un, coup
rendre sans objet toutes les propositions de solutions qui l'ont

. precedes, et donner un oours nouveau au debati en posant des
contraintes our toutes oelles qui suivront. Cette possibilite qu'un
eeul enonce "influence" tone lee entree. h tons les niveaux. fait
voler en eclats la hierarchisation de la D.A.P. ,en problemes et

.

sous-problemes beam our une analyee. "prooedurale", qui voulait
qu'une foie resolu le _sous-probleme SP, "remonte", muni de la
solution de SP (qui ferait alors partie du eavoir du groupe), au
probleme P, lequel serait rests "en plan", .sins modification, dans

, l'attente de oette solution de SP .

Cette inadaptatiori de la desoription aux observations eolaire du
coup le decalage entre les preparations des seances (analysOes a
priori suivent un tel.schema desoriptif, alors implioite) et leur
deroulement. Nous avions obserVe ce decalage, mais en le mettant au'
oompte de la mist, en oeuvre inadequate dune analyse oorreote.'

Par ailleurs, nous avons longtemps continue h conoevoir l'analyse
des seanoes de D.A.P. suivant la sohema initial, alors que oelui-oi
avait cease de oorrespondre _aux observations, et ramie A revolution
de la theorisation. Ce fait.nous parait une exoellente illustration
de la necessite de porter son attention sur la realisation effective
des dispoeitife didaotiquee.

3. ANALYSE

Dire que toute intervention pout influencer toutes miles qui
suivent, revient A signifier qu'on ne pout reduire la cloture d'une
dismission A une "fermeture de parinthese", dont le aontenu entier
',hurrah etre oublie au profit de la seule connaissance visee.
Contrairement' (peut-are) au "What Soientifique", la.D.A.P. ne nous
paraft pas etre essentiellement un .simple moyen d'Iaborder 'les
problemes reellement poses sur leo concepts eneeignes* 1G.R.D.E.S
1987, communioation'A PME discussion n'a pas pour fonctiou
d'otre oubliee sitOtla oonnaiesanoe aquise. mais an oontraire nous

. parait constitutive du sans que les etudiants peurront .donner (y
oomprie ulterieurement) A oette oonnaissanoe.

.Autrement dit, nous sonnies amenes A-Fenser que lee enonoes (de'
'divers niveaux) mama lors dune seance. ant une "histoire". qui
eat un element essentiel de leur sans . C'est ici que nous retrouvons
la problematique generale de 1iuteriorisation du debat". Pour nous, .

oe m'est-pas le soul savoir etabli lore du &That qui est interiorise,
mais 1'unit6 formee du savoir et de son histoire.

(1) Per exempla, certains ononces portalent sur des objets mathematiques parte itement connus
(notion de multiple, ou equation du premier dogre), mats posalent des problemes de logique ;
pour d' autres enonces, c'etait 1' inverse.
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Toute reflexion didaotique sur l'institutionnalisation des savoirs
en situation de delbat, doit A notre avis tenir compte de cet aspect
des °hoses.

Ceoi dit, tout oe qui precede est presente en foroant le trait",
aussi bien en ce qui conoerne la schematisation des situations de
D.A.P., que leur opposition aveo celles de "Mat Soientifique"
En particulier, ce qui vient dit sur l'interiorisation des
oonnaissanoee doit etre module en fonotion de leur niveau:
mathematique, metamathematique, methodologique, etc...

Naintenant, comment analyser de tels Anonces "8 histoire" et

rendre oompte de is logique dee seances ?

Lee difficultes d'une interpretation procedurale dune séance de
D.A.P., liees au constat qu'il nest pas possible d'analyser
separement le contemn dune séance et son fonotionnement
communicationnel, nous ont amenes, entre sutras, A explorer is voie
d'une analyse que nous qualifione de "dramaturgique". Nous cherchons
ainsi A justifier is decoupage des seances en "actes", "scenes",

"moments" et "transitions", en repOrant lee ohangements salon 'deux
niveaux, qualifies de "problematique" et "dramaturgique" (qui

correspondent, dans un certain sens, au plan du "oontenu" et A oelui
des phenomenes de communication).

4. PERSPECTIVES

Dans la mesure oil un tel travail consiate a "objectiver" au

maximum l'analyse des observations, on prendra garde A ne pas

substituer au sen8 operatoire des mots employes (2) (sons que nous
sommea precisement en train d'etablir), une signification
metaphorique derivee sans contrele. Ainsi, le deroulement d'une
D.A.P. s'apparente plutet, par as forme, A une improvisation
collective sur un sujet .donne, qu'A la representation dune piece
dejA ecrite.

Cette remarque vaut egalement pour une autre piste de recherche
que nous explorons 8 l'heure actuelle, consistant A penser la gestion
dune D.A.P. aveo oertains concepts tires des recherche& en

Intelligence Artificielle (3). De ce point de vue, deorire is gestion
d'une D.A.P., c'est mettre en evidence quelques ArOgles*
(d'interpretation et d'aotion) de l'enseignant considers comme un
«expert* (et ensuite, analyser en quoi une telle description se sera
ecartee des observations !)

(1) La demarche de D. A . P concerne les Travaux Diriges, tandisque le 'What Sc lent' f porte
essentiellement our lea cows : ce qui est valable pour 1 ' un ne 1' est paa forcement pour
1 autre. L' etude de ces differences fait d' al 1 laws part ie de notre recherche.

(2) Actes- scenes* ;dramaturgleete...
(3) En particuller , nous pensons qua les descriptions de D. A. P. gagneraient A etre envisagees

sous forme 'declarative- et non pas "procedural.' (ce qui eat A rapprocher de is difference
de s0715 entre lea mots vgerern et *organisers se rapportant dune discussion) .
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Enfin, l'analyse des D.A.P. pourra-servir a determiner un "profil"
differentiel des seances, ce qui permettra d'expliciter ce qui est
oaraoterietique de oette doimarohe d'enseignement, par rapport A tout
autre type de situation oil "les OlOves participant ".

En résumé, cette recherche pourra permettre d'expliciter les liens
entre les ohoix theoriques effectues, les dispositife d'enseignement
retenus et les pratiques effeotivement adopteles, tell que nous
pouvons lee connaltre par l'interpretation des donnees d'observation.

ANNEXES :

(Al) DESCRIPTION SCHENATIOUE D'UNE SEANCE DE D.A.P.
Cette description sohematique est tireedu decryptage d'une séance

qui a eu lieu le 14/02/1987.

1 ) L'enseignant rappelle le problOme. et it demands aux eleves leura
propositions et remarques sus ce sujet (souls les elbves y ayant
effectivement refleohi avant la séance proposeront des enonoes ; par
contre, d'autres eleves partioiperont aussi A la discussion).

2 ) Sous is dictee des eleves. le ma tre ecrit. au tableau les
diverses propositions. eventuellement accompagnees d'un debut de
justification.I1 est A noter que cos interventions se situent A des
niveaux differents :

solution au problems,
- remarques methodologiques sur is maniere de le resoudre,
- questions complementaires,

etc ...

L'enseignant intervient pour reformuler (ou faire reformuler) les
propositions, signaler les rapports entre elles (equivalence,
contradiction, etc...), mais pe laisse pas transparaitre son avis sur
Jour validite.

3 ) Le maitre sollicite lea interventions des 614vea pour attaquer ott
defendre les propositions. De moms que ces derniftes, les nouvelles
interventions se situent A des niveaux divers :

- autorefutation dune proposition par son auteur,
- enonce dune nouvelle conjecture,
- contre-exemple A un autre proposition,
- contestation de oe contre- exempla sur un point de oalcul,
- questions de technique mathematique posees A la cantonnade,
- proposition dune mothode pour resoudre une difficult4,

etc...

Durant oette phase, le maitre donne la parole, transorit au
tableau, reformule .ou fait reformuler certains arguments. Il met aux
voix oertaines propositions afin d'amener le plus grand sombre
d'Oleves A prendre parti personnellement. I1 lui arrive d'intervenir
direotement, en tant que participant au debat - et non pas en tant
que maitre dont is prise de parole serait le signe dune
institutionnalisation. A ce propos, vouloir que be maitre soit
robellement "neutre" au niveau du contenu est une exigence sans doute
irrealisable, et peut-etre memo dense de sons ou non pertinente. En
tous cas, is ."neutralite" du maitre eat une composante variable de
la situation : be vrai travail didaotique nous paralt consister A
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comprendre comment le maitre "triche", consciemment ou non, avec son
statut d'animateur "neutre" du debat.

A d'autres moments, it recapitule, et commente un point de
mathematiques Cu le °ours que, prend la discussion. Enfin, pout
proposer lui-memo un nouvel *nonce A la collectivite.

4) La (sous-) discussion d'une proposition se clot generalement
lorsque personae ne conteste plus une recapitulation proposee par le
maitre.

(A2) A L'ORIGINE DE LADE/ARCM

(d'apree le Cahier de.Didaotique des Maths 49)-

Moine qu'un comportement acquis et consolide par des mutes
d'etudes, nouspensions quo c'etait un certain etat d'esprit qu'il
nous fallait modifier. Cola supposait d'agir our l'ensemble du
systems relationnel (maitre - eleve - savoir) propre A toute
situation-didactique. C'eat ce quo nous aeons defini par le triple
deplacement d'attitude suivant :

1 Faire passer la communication maitre -eleve (et anss&
inter-elves) du regintre rbotorigpe Ian sons pejoratif)
BON/MUUIVAIS an registre rationnel VRAI / FAUX.

L'objectif de l'etudiant, lorsqu'il communique une solution A
l'enseignant, eat davantage de patisfaire ce dernier dont it attend
un jugement de valour (la note) quo de le convainore (of. ALIBERT at
al, 1986, G.R.D.E.S 1987). Ceci s'exprims, notamment, dans une
attitude "juridique" (LACOMBE, 1984, 1987, DROUHARD, 1987) par
rapport A l'activite mathematique (ce qu'il "faut" faire/ce.qu'il "ne
faut pas" faire) (PAOUELIER, 1986).

Des lore, it nest pas etonnant quo be fait de prendre is parole,
pour proposer ou defendre une solution, apparaisse A l'etudiant comme
une activite vide de sons et denuee d'enjeu, puisque c'est be maitre
qui prend on charge is question do la validite de cette solution.

2 faire en sorts quo l'etudiant purls du problems pint/It
ou'il sit le 'sentiment gue "le problems Feria de lui" au,

travers du verdict de'Venseigment.
Tres souvent l'etudiant aborde La-recherche d'un.problems aveo une

mentalite de "victims", victims d'un jeu dont lea regles lui
echappent et dont be denouement sera son appreciation par
l'enseignant. Dans cot etat d'esprit, it s'agit dono pour l'etudiant
de se "protegee, en ayant recours A dee astuces, des recettes; des
automatismes (of. CHASTENET et al., 1987), -qu'd1 applique des qu'il
croit identifier be danger (example : calculer le discriminant des
qu'il y a du second degre...)..

Le &placement quo nous souhaitions favoriser visait donc
l'aCquisition .d'une certaine "autonomde" par rapport au texte du
probleme : dire s'il est classique ou insolite, reconnaitre; le ass
.echeant, s'il est'ambigu, mal formula, envisager des prolongements,
des conjectures permettant de l'enriohir... En un mot, parlor
(mathematiquement, ou matamathematiquement) du problems, ,dans un
discours recherohant ou exposant sa resolution.
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3 Taira on next° clam ion 610vom reonsagont (A in pmcmiOmm .
EARKROAAG) dame MAO di0OUNRiOA ACIAtRAdiOtALTO portant AUK in
SZ6Ka§fht2231&&attirantigal

L'idee, paradoxale en apparence, qui est sous-jaoente A ce
troisiOme point, est que l'eleve ne peut aocuider au jugement de
verite (vrai/faux) tant qu'il reste A un niveau formel, tant qu'il
n'a pas ete intimement oonvainou, A un moment donne, quo oe qu'il
pretendait etait vrai (ou faux).

Autroment dit la verite dun mono: mathematigue qui typiquement
ne depend Ai des circonstanoes. nip des individus. ne prend de sena.
pour l'eleve quo dans l'exaote manure o4 elle a ete. A un moment
donne. "se verite ("contextualiode" et personnaliseel.

Cette personnalisation passe, A notre avis, par le debat
oontradictoire : lorsque relieve pretend. que tel enonce est vrai
tandis que son voisin lui soutient mordious qu'il est faux.

En bref, les trois points evoques oi-dessus oonoernent :

1 : le rapport de l'eleve au maitre.
2 : le rapport de l'eleve au (texte du) savoir.
3 : le rapport de l'eleve A see oondisoiples.e

MUM:MEM
ALIBERT D. (1987) : Situation oodidaotique et delooalisation du

savoir, Publication annuelle du seatiaire de didadtigue des
nothematiques..., U.S.T.N.G, Grenoble (A paraitre).

BOURDIEU P., CHAMBORECON J-Cl., PASSERON J-Cl. (1983) : Le AMtier.de
sociologue; Houton (La Haye) at EHESS (Paris).

CHASTENET DE GERY J., DROUHARD J-Ph., HOCOUENGHEM S. et al. (1987) :

Enquote our les aoquis Actes du colloque "dlientatiaSet
dodoes Universite de Paris-Dauphine.

GROUPE DE RECHERCHE SUR LA DIDACTIOUE DE L'ENSEIGNIMENT SUPERIEUR
(ALIBERT GRENIER LEGRAND RICHARD), (1987) : Alteration of
didactic contract in oodidaotio situation, Proceedings of Awn;
vol. III.

DROUHARD J-Ph (1987) : Approohe linguistique dune distinction.
intuitive : erreurs regulieres vs. erreurs sporadiques en algebre
elementaire, Actes des Journ4es de la MEWL Sherbrooke, Ouebeo.

DROUHARD J -Ph., PAOUELIER Y. (1987) : Recherche dune demarohe
d'enseignement en mathematiques, aveo des adultes, Education
pernonente;90 (oe texte, dans une version remaniee, forme le
Cabier de.ieddSotique des AratheAstiques, 44, IREM Paris Sud).

GRENIER D., LEGRAND M., RICHARD F. (1985) : Ube sequence
d'enseignement our l'integrale en DEUG A lore annee, abier de
didactique des amthematigues,22, IREM Paris-Sud.

ALIBERT D., GRENIER D., LEGRAND N., RICHARD F. (1986):1ntrodVotion
du debat saientifique Baas on sours de lere annee du DAWA
Rapport ATP, U.S.T.M:G, Grenoble.

LACOMBE D. (1984) : Specificitea du langage mathematique et
diffioultes pedagogiques resultantes, Actes des 6e J.1%17., GIORDAN
et MARTINAND (eds.),,APDRS, UER de Didaotique, Universite Paris 7.

LACOMBE D. (1987) : "Commentaire sur l'enquete precedente", /totes du
oolloque "Orientation et 'habeas dens l'enseignement superieur
Universite de Paris-Dauphine.

PAOUELIER Y. (1986);"Argumentation.et situations didactiques : une
demarche", publication annual)e db sektiaire de didactique des
mathematiques et de l'informatigue, U.S.T.M.G, Grenoble.

271



255

ON HELPING STUDENTS CONSTRUCT THE CONCEPT OF QUANTIFICATION
Ed Dubinsky, Purdue University

Abstract

This paper describes a genetic decomposition of the
mathematical concept of quantification; that is, it gives a
description of what could be the nature of a subject's
understanding of this concept in terms of schemes consisting
of objects arid processes, and also suggests what specific
reflective abstractions could be used in constructing it. The
genetic decomposition is based on a general theory of
knowledge and its acquisition, the researcher's mathematical
understanding of quantification, and an analysis of protocols
and other observations of students in the process of learning
this concept.

We also discuss an approach to helping students learn
quantification based on our theory and making use of
computer experiences with the programming language 1SETL.

Finally, we indicate the type of problems that students
were given and the success that they had in solving them.

Introduction

quantification of logical propositions over finilit or infinite sets is a
critical concept underlying a number of mathematical ideas from the
elementary, such as the difference between en identity that holds for all
values and an equation with particular solutions or the difference between
a proof and a counterexample, to tne advanced, such as the definition of
the limit or the axioms for a group. Many students have serious difficulty
in constructing this concept and this may help to explain their lack of
success in understanding mathematict at several levels.

In the work described here, we have attempted to understand the
psychological process of constructing quantification and use it to design
instruction, especially using computers, that can foster the development
of this concept by students. Thus there are two kinds of activity to be
reported. The first is a theoretical analySis of the concept of

quantification and how it is acquired. The second is a description of the
instructional treatment along with the results obtained.

Part of this-work was done jointly with F. Elterman and C. Gong.
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Theoretical analysis

Our analysis of quantification is based on a general theory derived from
Piaget's concept of reflective abstraction [3,5,9]. We have used it to study
mathematical induction [4,7] as well as quantification [6] and we are
presently working with it to study functions, sequences and limits (the
last two with 0. Cornu). According to this theory [5], mathematical
knowledge and its acquisition is described in terms of sc/VPInes

corresponding to specific mathematical concepts. A schema is a more or
less coherent collection of (mental or physical) objects and internal
processes which are applied to these objects. A schema is constructed by
means of certain cognitive activities called reflective estrectioris
These activities include: intenCrizetion, which is the construction of an
internal process relative to a series of actions that 'can be performed or
imagined to be performed on objects; coordination, which is the-

construction of a new internal procesS by combining two or more existing
processes; reversal, which is the creation of a new process by.inverting
an existing process; encapsulation, which converts a process into an
object by seeing it as a total entity; and generalization,, in which an
existing process is applied to an object for the first time.

Our theory hypothesizes that all objects and processes in logical
thinking are constructed in this way, beginning with physical action
schemas present at birthand continuing on up through the construction of
new mathematics at the research level. Figure I describes our notion of
schemas graphically.

interiorizetion

actions

generalization

Figure 1. Schemes and their acquisition
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A description of the schemes concerning a particular mathematical

concept along with the reflective abstractions by which they may be

constructed, is called a ,genetic decomposition of the concept. It is derived

from three sources. The first is the general theory. The second is the

mathematical knowledge that the researcher has about the concept. Third,

the most important source . is the information obtained from close
observation of students in the process of learning the concept. The

observations can 'take the form of clinical interviews, analysis of student

errors in performing mathematical tasks related to the concept, etc. The

researcher attempts to express the concept in terms of objects and
processes. The next step is to look at the difficulties which the students

are having and try to see if other students have overcome these difficulties

by appearing to make particular reflective abstractions. The processes,

objects, and reflective abstractions are then organized In a form that
expresses the observed development of the concept by the students.

The resulting genetic decomposition is then used as'e guide in designing

instructional treatment. In our work we have relied heavily on setting the
students to perform various tasks using computers because it seems to us

that certain computer activities are very similar to the reflective
abstractions and that students who engage in these activities may be more

likely to make the reflective abstractions in their minds. As We proceed

through the instruction, the same sort of observations are made continually

and the.genetic decomposition is revised accordingly. Thus at any point in

time, whet we use is only an approximate description of how some students

may construct a concept along with computer activities designed to foster

the constructions in that approximation.

We feel that this approach is very. much in the same spirit as the

Teaching Experiment of -L. Steffe (as described in (81) and ..the Didactic.

Engineering used in France III. Our genetic decomposition of quantification

is'the result of several years of theoretical analysis together with teaching

experiments; extensive observations of students 'and analyses of these

observations. Here, we concentrate on the resulting decomposition. Its

relation with the theory and the mathematical notion should be clear. Space

limitations prevent more than brief examples of how interview protocols
-influenced the genetic decomposition. Full details will appear elsewhere.
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A genetic decomposition of quantification

The construction begins with cognitive objects that are simple
declarations that may be true or false. These are made more complex in
two ways: by linking several with the standard logical connectors (and, or,
etc.); and by introducing variables to obtain proposition valued functions. In

both cases these are actions on the objects the linking and the function
action which must be interiorized to obtain processes.

The single-level quantification is constructed by coordinating these two
processes to obtain the single process of iterating through the domain of a
proposition valued function, checking the truth or falsity of the resulting
proposition and applying at each step conjunction or disjunction according to
whether it is a universal or existential quantification.

In order to move on to two-level quantifications; which are two (usually
different type) quantifiers applied to a proposition valued function of two
variables, the subject must encapsulate the above process to see that a
single-level quantification has the effect of replacing the function by a
single proposition. If the original proposition valued function involved two
variables, the effect of this encapsulated single-level quantification is to
replace it with a function involving one variable to which a second
single-level quantification can then be applied: Thus the two-level
quantification consists of parsing the original statement into two
quantifications and then coordinating two applications of single-level
quantification with an intervening encapsulation.

For three and higher level quantifications, the above procedure is iterated.
When there are more than two quantifications, the parsing is non-trivial
because there are several ways to group the statements. Since some of them
make more sense than others, this provides one wag to gauge the students'
understanding.

Our observations usually begin with non-mathematical .examples in order
to minimize the difficulty. As the students develop their concept of
quantification, mathematical content is gradUally introduced. Also, our
initial examples do not refer to familiar situations because we do not want
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the students to rely on remembered experiences, but rather to construct
objects and processes that might be new for them and must be imagined.

For example, consider the protocols of three students who were asked
what they would do to determine if the following statement is correct. They
are taken from a course taught by the author at a western U.S. state

university in the preliminary stages of the study.

Amongst all the fish flying around the gymnasium, there is one for
which there is, in every computer science class, a physics major who
knows how much the fish weighs.

This statement requires, inter alia, the interiorization of three processes
of iteration of a variable over its domain fish, classes and students. The
following student response indicates an iteration of the fish, but his
confusion suggests that it may be an action not yet internalized. It is not
clear if he is iterating over students and the classes are ignored completely.
Also, he does not succeed in applying quantifications.

STUDI. 1 would collect all of the fish in the gym and if one of
them...(pause)...I get one fish...you know, I go through each of the fishes
and then all of the computer science students know how much that fish
weighs...for each of the fishes...no, for one of the fishes.

The second student does seem to have interiorized iterations over the
classes and the students, but perhaps not the fish.

STUD2. Okay, you take all this you take the set of fish that are in the
gym and the set of students that are in computer science you would
take the set of all the computer science classes and the set of all the
students that are in those computer science classes and check to see if
there was a student in one of those yeah, at least one student in
every one of the classes that knew how much one of those fish in the
gym weighed. And if that were true you would return true, and if it
found one case where that failed it would be -- if there was one class
with no students...
INT. Okay, would you do it exactly the same as...
STUD2. I d probably 90 class by class and ask in each class if there was
somebody who didn t know how much any of the fish in the gym
weighed.
INT. So you would have skipped the first set you skip the set of
fishes?
STUD2. Yeah. I think I'd probably try and prove it false, rather than
trying to prove it.true.

STUD2 applies quantifications to the two processes that she does seem to
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have, .but cannot incorporate the fish, even with a prompt from the
interviewer. This may be because she has not encapsulated her two-level
quantification to see it as a single proposition valued function whose domain
variable is fish. -Compare this now with the following student who seems to
have encapsulated the two-level quantification as a proposition valued
function of the fish and then, with hesitation, seems to iterate the fish over
its domain and possibly applies the final quantification.

STUD3. Okay, I would look at a set of fish among the set of all available
fishes and I would have to iterate over that and of course the condition
is that as soon as I find the first one for which the rest of the long
expression holds, I stop right then and there.
INT. Can you explain to me what would be the rest of the whole
expression? How would you check that?

jSTUD3. Yeah, that was just the first step. I got...I' picking a fish and
then I have to start iterating over a set of available classes. Here I'll
have to go through every one of them for that fish. And then I would
have to go through a set of students in the des's. Here were dealing
with an exists so that as soon as we find the first one that matches
the rest of the conditions, its fine. And then I would run that function
on the student.
INT. What would you ask about the.student?
STUD3. I would ask if the student knows the weight of the fish.

The above discussion involves only the object -proposition that results
from a quantification. There are many other aspects to the genetic
decomposition of quantification. These include -a schema for negating a
quantified proposition and the action of reasaning.about a. proposition. There.
is not space here to go into these matters so we refer to the paper which
describes the analysis more completely [61.

Instructional treatment

The instructional treatment makes use of the programming language,
ISETL which is an interactive language that supports. most of the standard
constructs of mathematics in standard mathematical notation. Otherwise,
the programming syntax requirements are minimal and students spend
almost all of their programming effort on issues of mathematics as opposed
to programming. per se. Beginners tend to have little difficulty learning the
language and in a short time are able to construct fairly complicated
mathematical objects and processes. The way in which the language is used
is to ask the students to write programs chosen so that thinking about them
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will tend to induce the student to make the appropriate reflective
abstractions necessary to construct the schemes for the concept of
quantification.

For full details on the use of ISETL in this and other mathematical
contexts, the reader is referred to [21. In this paper, there is only space for
some general illustrations. For example, the linking of declarations with
conjunctions or disjunctions can be programmed directly and the student can
write procedures to implement proposition valued functions. The quantifiers
are invoked by using the keywords exists and forall, It is possible to write a
procedure that will accept a proposition valued function and a finite subset
of its domain and return km or false as the result of a quantification. The
use of these procedures can be iterated to obtain higher-level
quantifications. For each step of the genetic decomposition described above,
one or more types of tasks with ISETL are used to help the student take the
step. All of this treatment has been integrated into a full course in discrete
mathematics [2).

Results

Again, there is only room for a representative sample of results. The

following data is a selection from a single class of 19 students, average age
about 20, taught by the author at a small private engineering and science
university in upstate New York. This approach has been used by the author
and several colleagues at a number of schools in the United States. The

results seem to be generally consistent with what is reported here. It is
necessary to view these results in light of the fact that, in the United States
at least, students do not usually succeed in gaining muCh understanding of
quantification. The 10 representative questions are grouped in four
categories.

A. Express the folloyfrig statement in formal language.
1. There is a year in the 19th Century during which in Potsdam it snowed at least one day in

every month.
2. For every book in the library, there is a number of days (less than1000) such that if the

book is that number of days overdue, then the fine is $10.
3. Same as fish statement used in the protocols.

B. Negate the following statement.
4. For every city in Vermont, there is a city in Nev York which has the
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same name.
5. !here l3 a positive number Q such that for every positive P and for every x in (c-Q,c+QJ,

- 4) then IF(x)-F(c)1tP:-----
6. Same as question 3.

C. Describe how you would determine if the following statement were true or false.
7. Same as question 1.
8. Same as question 5.

D. Reasoning about the fish statement used in the protocols.
9. What can you say if you know there are no computer science classes?

10. What can you say if there are computer.science classes, but none has a physics major?

Here are the results for the 19 students.

Question: 1 2 3 4 5 6 7 8 9 10

Percent Correct: 69 47 84 95 55 71 75 76 82 82

Questions were either given for the students to do in class or as home
assignments. Note that both relatively low scores (Questions 2 and 5) came
with statements involving implication. The only other implication occurred
in Question 8. on which the students did well. One possible explanation for
the diffeence is that students can work through an implication but, at least
In the presence of a quantification, have difficulty expressing or negating an
implication. The results do not suggest any other difficulty.
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CHILDREN'S LEARNING IN A TRANSFORMATION GEOMETRYMICROWORLD

Laurie D. Edwards
Graduate Group in Science and Mathematics Education

University of California at Berkeley

Research in mathematics education has in recent years focused on two
important areas: the development of fine-grained models of learning, and
the explication of principles and practices in the design of effective
instructional environments. This paper discusses an ongoing research
project which investigates in depth children's mathematics learning in a
particular kind of instructional environment, a computer-based microworld.
The domain chosen for the microworld is transformation geometry. This
domain is both mathematically rich, and also connected with children's
everyday experience with motions in space. The purpose of the research is
to document the process of meaning-construction that takes place as
middle-school students interact with the microworld, and to use this
empirical data to engineer a more effective learning environment.

Instructional environments for mathematics created in the past decades have in many

cases been characterized by a concern for making connections with children's experience. For

example, the Logo environment ties computer operations to children's "persorial geometry"

(Papert, 1980); we also see an increasing use of manipulatives, for instance Cuisinaire rods, in

mathematics instruction. Such manipulatives and concrete computer environments allow

students to build models of mathematical concepts from the bottom up, basing their

understanding on experiences under their own control (for examples of computer learning

environments, see Schwartz, 1987 and Thompson, 1985). This paper describes an_

principled design for a curriculum in transformation geometry which- iscentered on an

interactive graphical computer microworld. A microworld is an instantiation of the central

objects and relations of a domain into a concrete form which is accessible to new learners.

This microworld instantiates three Euclidean, or distance-preserving transformations:

translation, rotation, and reflection, as well as scaling and shearing.

The domain of transformation geometry was chosen because it is both mathematicalb,-

rich and at the same time grounded in everyday experience with motion and imagery. Thus,

students bring to the learning situation antecedent conceptual structures, strategies, and

expectations. The primary research problem has been to investigate the interactions betweel
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the learners' prior knowledge, and the new domain of mathematical experience presented in
the curriculum. Information about these interactions, including misconceptions, successful
transitions, and conceptual change, is used to build a model of the typical "learning path"
through the domain, and to modify the microworld and the curriculum.

OBJECTIVES

The objective is to create a plausible model of the way children construct meanings for
the new mathematical entities in the microworld, and to use this model to refine and improve
the pedagogy. A specific focus of the research is on the children's use of qualitative, visual or
imagery-based strategies as well as quantitative and symbolic methods for problem-solving.
The primary analytic frame is genetic task analysis (diSessa, 1982; Kliman, 1987), in which
empirical observations are employed to create a model of the learner's changing conceptual
structure. This paper presents preliminary results from two rounds of pilot-testing of the
curriculum with fourteen-year-old students, as well as a description of questions to be pursued
during expanded use of the microworld in the near future.

THE MICROWORLD

The microworld presents the learner with a computer screen, representing the plane, a
grid showing the origin at the center of the screen, and a simple plane figure shaped like the
letter L. Transformations available include: slide (translation), rotate, and reflect (all of
which preserve distance); scale (which changes size but preserves shape); and shear (which
changes shape but preserves area). There are also simple, "local" versions of several
transformations, namely, pivot, flip, and size. These simple versions transform the shape "in
place," rather than using the whole screen, and are intended to correspond to children's initial
conceptualizations of these operations.

One functional activity' programmed into the microworld is the Match game. The user is
asked to enter a sequence of transformations to move the center shape until it is superimposed
onto a congruent shape placed randomly on the screen. The purpose is to give students
experience with the individual transformations, and with decomposing a complex mapping
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into simpler operations. It is also expected that students will begin to understand and
generalize about the properties of the various transformations, as they use them strategically to

achieve the goals of the game.

METHODOLOGY

There have been two rounds of pilot-testing of the microworld, with the final data

collection to take place in a middle-school this term. In the initial field test, 65 seventh and

eighth grade students (age range twelve to fourteen) used the microworld in pairs. Half the

students had completed a two-week unit in their mathematics class on transformation
geometry, and the other group were novices. Both groups enjoyed using the microworld,
particularly the Match game. The two groups differed somewhat in their strategies for the

game. The group with previous domain experience tended to use the whole-plane versions of

"rotate" and "reflect," while the novices used the simpler "pivot" and "flip." Several students

discovered a fool-proof game strategy which involved sliding then pivoting and/or flipping

the shape.

In the second round of piloting three students were videotaped using the microworld

with the investigator. None of these subjects had previous experience with transformation
geometry, although two (Charles and Joanna) had Logo experience.

THE TASKS

Joanna, Charles, and Lee spent from 1 1/2 to 3 hours using the microworld and doing

paper-and-pencil tasks. The sessions included time for free exploration and playing the Match

game, as well as for simple problem-solving. The tasks included:

1. Identification of transformations:

Five transformations were illustrated on paper, and the student was asked to name

each and give the correct Logo command.
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2. Execution of transformations:

The student was given six sheets showing the starting figure and a Logo
command, and was asked to sketch the result.

3. Finding inverses:

Working on the computer with the investigator, the student was asked to find the

transformation which would "undo" an operation.

4. Combining transformations (composition):

Student was asked to predict the effect of two transformations performed
sequentially. Then he/she was asked to find a single equivalent transformation- .

RESULTS

1. Identification task:

The students were least successful on this task. Out of the 14 attempts (one of the 5
problems was not given to Joanna), 9 were eventually correct. Four of the correct responses

were arrived at following multiple attempts, using either sheets of tracing paper or the
computer for trial and error. The most difficult of the identification tasks was finding the
center point of a rotation. Out of six attempts, three were successful.

There were two interesting strategies used in the unsuccessful responses. Joanna, when

trying to find the center point of a rotation, tended to select the midpoint of an imaginary line

connecting the starting vertices of the two shapes, as illustrated in Figure 1. In choosing this

point, the subject seemed to be ignoring some of the constraints of the problem - her "center

point" would map the two vertices onto each other under a 180° rotation, but the rest of the

figtires would not match. She also did not seem to see that the figures differed in heading by

90°, not 180°. She did not use tracing paper or any other methods to check her answer, and

when I asked her, "Is there any way you can figure it out ?," she justified her answer by saying

"Well, because there's an equal distance between there [from the "center point" to each
vertex], so it could use this point and turn around that." This response suggests that the

midpoint chosen by Joanna was visually salient, but distracted her from seeking the correct

center point. It also highlights the utility of having concrete or other methods to check one's

answer.

283



267

Figure 2: Joanna 's Incorrect Center of Rotation

A second strategy used in the rotation tasks reflects what I believe is a naive conception

about transformations. Several students, including Lee, interpreted a rotation not as choosing

an arbitrary point and then turning the whole plane around it, but instead as a composite

motion which moves the shape ma specified point and then turns itaround its starting vertex.

This misinterpretation of rotation is consistent with a conceptualization of transformations

which does not think of the plane as the object being transformed. Instead, it is the figure

which is being moved about or changed, with the grid being used to say how much or where.

Some students found imagining a rotation around a point not on orin the figure itself to be

difficult. This might be because of previous experiences with rotations, such as record

turntables, door handles or the hands of a clock, in which the center of rotation is always

within the bounds of the object. A "bridging activity" was used by the investigator to help

students who had this "local" conceptualization of rotation. The students were asked to think

of a string or stick between the figure and the center point of the rotation, and then to imagine

rotating the string plus figure through the specified angle. A more concrete version of the

activity was to have the student perform the rotation with tracing paper, first "pinning down"

the center point with a pencil. Both of these activities allowed the child to think of the figure

plus string, or figure on paper, as one object, and thus wereconsistent with prior conceptions.

A possible modification of the rnicroworld would address the more general issue of the

students' awareness of the plane as the object undergoing a transformation. The plane may

not be inferred or constructed as a'conceptual object by the students because they see only the

"motion" of one shape, and so the idea of the plane as a span of infinite points or locations

may not occur to them. Adding another object to the screen, which is mapped under the same
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transformation, should allow the student to realize that both figures, and any other set of
points, are part of a larger plane, and the transformation applies to all the points in that plane.
This modification will be tested when the microworld is used with the next group of children.

2. Execution task:

The students in the pilot group were much more successful at the execution task.
Sixteen out of the seventeen solutions were correct. Strategies used included visual
estimation, paper folding, rotating and tracing, and use of rulers.

3. Finding inverses:

The investigator worked individually with the students for this task and for combining
transformations, and the specific problems varied from subject to subject. The students were
all successful at predicting the operations which would "undo" various transformations. One
interesting error occurred when Charles spontaneously tried to find the inverse of a slide. He
entered "Slide -120 -123" and then said "I'm seeing if I can get it back." His first try was
"Slide -123 -120." That is, he reversed the order of the inputs. When this did not have the
desired effect, he thought a bit more and realized he would have to change the signs of his
original inputs ("I have to have it positive"). His fist impulse is interesting, though, because
it suggests a kind of shallow "symbol-pushing" of the numbers, rather than a precise
understanding of how the Logo commands are used to represent motions of the plane.
Charles corrected himself by making use of the visual feedback from the microworld, and
other students were observed trying various inputs to commands and watching the results in
order to disambiguate their understandings of the operations..

4. Combining transformations:

Again, the students were in general successful in performing such tasks as predicting the
outcome of two slides, and finding a single expression with the same effect. The most
difficult combination was two reflections in parallel axes. The outcome is a slide, and though
it is not expected that students will come up with an algebraic formula to find the displacement,
they can read it off the screen. Joanna and Lee used the screen information to do so. Charles
once again seemed to focus on modifying the Logo commands, at first adding the parameters
of the two reflects and then trying to take the average. After several tries, he noticed with a
little surprise that two reflects don't make a reflect, but instead a slide, and found the correct
parameters.

2 85



269

DISCUSSION

The preliminary results from the piloting highlighted a number of issues which Will be

investigated further in the next phase of the research. This phase will consist of expanded use

of the microworld with a larger number of students. The topic of transformation geometry
will be introduced to a 7th grade class at a local middle school, using paper folding and
tracing, the microworld, and class discussion. Five pairs of students, reflecting a range of
mathematical ability, will be selected to continue working with the microworld for about six

More sessions, which will be videotaped. In addition to the Mink-aloud protocol data, the

students will also be given paper-and-pencil measures, such as an adaptation of the
transformation geometry section of Hart's mathematics tests (Hart, 1981).

The issues to be addressed in this phase include the students' understanding of
transformations as whole-plane operations, and as conceptual objects in themselves. That is,

it may be that students start out by seeing the transformations simply as ways to get the shape

to behave as they desire. The inverse-finding and composition tasks are intended to encourage

the students to consider the transformations as objects which can be combined; and to see that

certain combinations form systems with imeresting properties. To further this aim, a new task

will involve selected sets of transformations which make up groups, for example, groups of

rotations around a single point, or the reflections and rotations of a square. The pairs of

students will be asked to explore these special sets of transformations, by answering such

questions as: How many ways can you transform a square so that it stays in the same place?

What happens when you perform two reflections in perpendicular axes? and so on. In using

the microworld to answer these questions, the students will be encouraged to look for
patterns, to generalize, to test hypotheses on different examples, and to document the results

of their explorations in written form .

A second new task will involve using the transformations to generate or match
symmetric patterns, such as wallpaper designs. This activity gives the students more scope to

use the transformations for projects of their own choosing, and should provide information on

how they think of the transformations once they are beyond the initial learning phase.

The results presented here provide the first sketchy elements of a more complete learning

path through the domain. The computer microworld gives the students an arena in which to

explore the transformations, starting with single operations and working towards a non-formal
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understanding of groups of transformations. It also provides the researcher with a modifiable

tool for probing the learner's changing conceptualizations. The next phase of the research will

continue the iterative process of building a model of the learning and using this information to

improve the learning environment.
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SOME COGNITIVE PREFERENCE STYLES IN STUDYING MATHEMATICS

Dr. HAMDY EL-FARAMAWY

Abstract

The present study was sorted to explore the cogni-
tive styles concerning the study of mathematics. Cogni-
tive styles were focused are Field- independence depend-
ence and impulsivity-reflectivity.

Samples was choSen from College Students in Menou-
fie University-Egypt, they devided into two groups.
according to their achievement in mathematics. EFT and
MFFF were used to assess the student's cognitive styles.
Results indicated that-high achievement students in
mathematics are more field independent and more reflec7
tive than low achievement students.

Introduction

It became clear that students of approximately the same aptitudes

do not always perform equally well. in the classroom. The researches

in that field showed that the style which student brings it to a task

treating With the information, might be behind that differences in

performance. The style which person prefer to deal. with information

or response called "cognitive style". Witkin et al:'(1977) define

cognitive style. as " the characteristics approach the

-person brings with him to a wide' range of situations.- we called it

his 4styl.e", and because the approach encompasses both his perceptual

and intellectual activities - we spoke of it.as his-"cognitive style"

(P: 10). .

Cognitive style develops in the forM of cognitive structures which

become more differentiated with time and experience and which-become

increasingly stable as they devlop . Also, it could he said that the

cognitive styles indicate the form of cognitive. activity.not 'its content

4' This point was treated by the present researcher in paper .(in arabic)

titeled "Cognitive styles and psychological dillerentiation-Theori-
tical study" (in) The SecOnd Annual Conference of Egyptian Psycholo-
gical Society. t986.
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Tt has been establfthed by. researchers that f:he cognitive Style

is not as the ability. As Messick (1976) argues:that abilities and

cognitive style are linked by the concept of performance, since ability

implies the measurement of capacities in terms of maximumperformance,

while cognitive style implies the measurement of charatteristic modes

of operation in terms of typical performance. Further, he sees that

. alth6ugh abilities are nnipolar while .rognitive styles are hi-polar

both range from one extreme to opposite extreme.

/-in many instances the investigators claim to have discovered bi-

polar dimensions, and Messick (1976) lists these dimensions together'

with other cognitive styles categories, as follows:

Field independence vs. Field dependence.

Field articulation.

Conceptualizing styles.

Breads of categorization.

Conceptual differentiation.

Compartmentalization.

Conceptual. articulation.

Integrative complexity.

- Cognitive complexity vs. Simplicity.

Leveling vs. Sharpening.

- Scanning.

Reflection vs. Impulsivity.

Risk taking vs. Coati ousness.

- Tolerance for unrealisticexperience.

Constricted vs. Flexible. control,

- Strong vs. Weak automatization..

Conceptual vs. Perceptual -motor dominance.

Sensory modality perfof'mances.

- Converging-vs. Diverging.

In spite of the claims made by the respective authors for their

dimensions, there does remain a big confusion surrounding so many of

them, however some of them became most clear or more determined like
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"Field dependence vs. Field independence", and "Impulsivity vs. Reflect-

ivity", which the presetit study is concerning...

Furthermore, the researches indicated that cognitive styles has

a potentially. important relationship with educational performance

generally, and a student's acadeMic choice especially.

Statement of the problem:

If cognitive' style is the mode of organizing or categorizing the

environment, therefore, it must.be manifest as a factor in school learn-

ing. However, there are acumulated researches related that field,

attention should be given to more systematic researches trying to investi-

gate the cognitive styles influence in learning each of subject matter

in which lead to high achievement. Such researches enables us to esta-

blish map of cognitive styles represent a picture of the variety of

profiles the student uses in his education. Then we could translate

educational and psychological. research on cognitive styles into prac-

tice. Accordingly, the teacher ables to consider the individual in

terms of this map, and he could match the student to appropriate task.

The present study however, trying to demonistrates cognitive styles

which should be used by students studying mathematics to achieve a high

level in that field.

Previous attempts:

There are a lot of researchs which examined the relationship bet-

ween academic achievement and cognitive style'. Haskins and Mckinney

(1976) found concurrent relationships between the performance on match-

ing familiar figures test (MFFT)-and IOWA achievement test scores in

elementary school children, but they did not explore information about

-the-Predictive capacity of the MFF with respect, to academic achievement.

Also,' the differencei in achievement between reflectives and impulsives-

children identified as reflectives in grade 4 had significantly higher

achievement test scores'in grade 5 and 6 those identified as impulsives

(Barrett, 1977).
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Moreover, there are a number of researchs examinedthis-rejation-

ship with different cognitive'styles and other educational fields such

as,:Tamir (1976) who examined the relationship between achievement in

biology and cognitive preference styles (Analytical, Relational and

Inferential).

In high school students with-results that show that levels of

cognitive style and achievement are related to four independent varia-

bles, namely sex, school environment, the nature of the,curriculuM and

the attitudes of teachers toward-in inquiry-oriented curriculum. S:i.mi-

larly,, (1982) has studied the same cognitive styles of secon-

dary school chemistry student and he established a significant corre-

lation between these cognitive styles and differential achiement in

particular tasks in an achievement examination.

Recently, however, attention has been given.to-matching between

teacher's cognitive styles and student's achievement. For example,

EaraCho and Dayton (1980) have examined this relationship for 2nd and,

5th graders, 36 teachers and 132 children were administered.theembedd-

ed Figures Test (EFT) to measure field-independence versus field- depen-

dence cognitive style. 'Children and teachers with similar cognitive

styles were considered matched, whereas children and teachers with

different cognitive styles were considered mismatched. Results indicat-

edsgnificanr effects on achievement duo to leache's cogiative styles,

,but there was no significant- outcome associated. with the matching -varia-

t However, children with.field-independent.teachers)rrespective of

their own styles showed greater achievement gains than children with

field dependent teachers,- Also, the present researcher (El-Faramawy,

1984) explored the relationship between students' and teachers' cogni-

tive styles, and the influence of this relationship upon student's
.

academic achievement in iology,and:academic tendency toward the subject

matter. The dimension.Of cognitive style in which the study focused

was kagan'sInpulsivity7Reflectivity" cognitive style. Results indicat-

ed that level -of student achievement appears to be related most closely

to the variable of teacher cognitive style, however the correspondence

in the.cnse. of impulsivity does not appear to increase ;significantly
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expectations 'of high student aChievement but may contribute to medium

Achievement and medium tendency.

Definition of terms:

It is essential at the out set that the basic terms used in the

study are clearly defined:

Cognitive styles:

The present study would be concern two cognitive styles called ,

impulsivity versus reflectivity and field dependence versus field in-

dependence.

The firt style was.defined as the tendency to reflect over alter-

native solution' possibilities (reflective) in con trast to the tendency

to make an impulsive selection of a solution in problems with high

response uncertainty (impulsive) (Kagan, Rosman, Day and PhillipS;1964).

The style operationally, is defined by (agganand his associates

(1964) as two dimensions, namely latency (times) to first response and

accuracy of choice or total errors.' These two dimensions are both

assessed by the Matching Familiar Figures Test (MFFT).. This style

woul.d'he assessed also in the present study by MFFT which established

by the present researcher.

However, the-other style called Field dependence versus field in-

dependence was conceptualized by Witkin et al. (1962) as the tendency.

to 4rceive and'. restructure' stimulus field in order to separate items

from that field and view the field yin "parts" field-independent people

are analytical in their perceptions of a field and can separate out

discrete objects. Field-dependent people perceive a field in more

global. fashion and are less likely to dis embed the discrete objects

within the field. This style would be assessed in the present study

by Embedded Figures Test (EFT).

Hypothesis:

The present study however .trying to realize the following hypo-

thesis. There are significant differences between student's nercormance
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in cognitiVe styles tests and their achievement"levels in mathematics,

as follows:

a) High achievement students are more reflective than low achievement

students.

b) High achievement students are field-independent than low achieve -

ment students in mathematics. :

Procedures and results

Sample chogen in the present study are 325 students (male and

female) representing the fourth-grade in the College of Fahicalion-

Menoufia University, Egypt. 'Theitmean age is 21.5 years.

According to mean achievement in mathematics of each student in

his last year, two groups were cnosen as follows:

27% of the whole sample (n = 88) achieved higher Level in mathe-

matics.

27% of the whole sample Xn = 88) achieved lower level in mathe-

matics.

Table (1) shows the.two'groups by. mean-of achievement and t value.

Table(1): Classification of groups by mean' of achievement, standard

deviation and t value.

Sample Achievement

n. SD t value

Higher Ach.
27%

88 9.06 1.16

Lower Ach.
27%

88. 5.63 0.48

25.48

** = Significant at 0.01 evel.

The findings in Table (1) indicate that there is difference in

achieveMent between.thetwo-groups where higher achievement group has.
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mean reachs to 9.06 and lower achievement group 5.63 and that difference

is significant at 0.01 level (1- value = 25.48).

Thereafter., the two groups were administered the "Embedded Figures

Test" (EFT) and "The Matching Familiar Figures Test" (MFFT) to measure

the two cognitive styles (Field dependence-independence and Impulsivity-

Reflectivity, respectively).

The following tables shows results:

Table (2): The two groups by mean of independence, standard deviation,

and t value.

Groups
(EFT) independence

n. m. SD t. value

Higher Ach. 88 10.16 4.38

Lower Ach. 88 6.58 4.24

5.48

** = Significant at 0.01 level.

Table (3): The two groups by_mean of latency, standard deviation and

t. value.

Groups
MFFT latency

n. m. SD t. value

Higher Ach. 88 983.09 337,;05

Lower Ach.

2.29

88 862.52 357.45

* = Significant at 0.05 level

Table,(4): The two groups.by mean of errors, Standaid deviation' and

t. value.

Groups
MFFT errors

n. m. SD t. value

Higher Ach. 88 21.16 1.1,03

.Lower Ach. 88 28.81 17.18
3.5

'** = Significant at 0.01 level.
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Discussion

The present study was designed to find out the cognitive styles

contributing to a high achievement in motheMatics. The findings emerg

ing from the study reveal that the hypothesis of the study is supported.

Overall, there are differences between high achievement student's and

low achievement students in their performance on tognitive styles' tests

as we see-in Tables 2, 3and 4.

Table (2) indicates that higher achievement students are more in

dependent than lower achievement students (meanindependence= 10.16,

6.58 respectively)whilet value between the Iwo groups is 5.48 which

significant at 0.01 level.

That finding is relating the cognitive style called "Field.depen

dence vs.. Field independence". However, the findings tn Tables 3 and 4

are relating Impulsivity Reflectivity cognitive style'which is assessed

in terms of two dimensions, they are latency and errors, findings

of latency and errors indicate that high achievement sr*entsare more

-reflective than loWer.achievement students, Tables 3 and4ihnw: that

mean latencis = 983.09, 862.52 respectively and mean errors=2116,.

28.81 respectively, where the two t values are signifiCant*0:05 and

0.01 level for latency and errors respectively.

Overall, it could be said that high achievement students are more

field independent and reflective than.low achievement students in

mathematics.

The present study, however, suggests that if students studying

mathematics are field independent and reflectives,then, they would be

high achievers in mathematics. These result is expected because the

field of mathematics (Applied and pure mathematics) requires analyijcal

and geometrize Ireatment. with the content of that field.

Also, this result 'suggests that much further studies are required

to explore other cognitive styles influencing the field of mathematics

and ()tiler fields of education., such researches enables us to detect

possible trend data concerning cognitive styles mapping to be benifilt

i6 matching student with the suitable field of education.
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EXPLORING CHILDREN'S PERCEPTION OF MATHEMATICS THROUGH

LETTERS AND PROBLEMS WRITTEN BY CHILDREN

Nerida F. Ellerton

Deakin University

Frequently, a direct questionnaire approach is used to explore the affective
domain. In this study, however, an indirect task was used to explore
children's perception of mathematics. A total of 94 Grade 6 children were
asked to write a letter to a friend (who had been ill) and explain what
mathematics had been covered while the friend was away from school.
Through their responses to this task, children revealed their perception of
the mathematics they had recently encountered at school. The results show
that the teaching style encountered by the children is reflected in their
letters. The lack of detail in many of the explanations is interpreted as
either a lack of understanding on the children's part or as closely linked
with the children's low self-esteem and interest in mathematics.

INTRODUCTION

Children's perception of mathematics is influenced by interaction with others - parents, peers
and teachers - in the home, the playground and the classroom.

Just as children are engaged in constructing mathematical meaning from the sets of experiences

and interactions that confront them (Bauersfeld, 1980; Labinowicz, 1985; Cobb, 1986), so

they are constructing and establishing mathematical perceptions in the affective domain. As

McLeod (1987a) pointed out, new approaches to research in the affective area are needed, and

he suggested that techniques used in constructivist research in the cognitive domain could be
applied in affective studies.

Increased emphasis on children's use of language in the mathematics classroom has paralleled

the recognition of constructivist approaches in mathematics education. For example, Geeslin

(1977) used writing about mathematics as a teaching technique, while Kennedy (1985)
introduced several forms of writing to his mathematics students, including writing letters about

what they were studying, keeping regular logs and devising mathematics problems about a

specific topic. Ellerton (1980, 1986a,b) and van den Brink (1985) have introduced creative

writing in mathematics by asking children to make up mathematics problems while Mett (1987)

has used journal writing, writing in class and project writing as learning devices in calculus.
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Children's expression of mathematical ideas through the creation of their own mathematics,

problems demonstrates not only their understanding and level of concept development, but

also reflects their perception about the bature of mathematics (Ellerton, 1986b). In contrast, a

direct questionnaire approach tests responses to researchers' pre-formed notions about the
affective domain (McLeod, 1987a), and there is little, if any, opportunity for students to

express their own ideas about mathematics.

As individuals, we reveal our attitudes towards a particular area of human endeavour through

our facial expression, our body language, what we say, what we write and what we do. These

actions reflect our thoughts and our feelings. Some tasks provide more useful mirrors for our

thoughts and feelings than others. Actions that are well rehearsed (involving an automatic

response, for example) will elicit less affective response than actions which stem from novel

tasks or situations that need interpretation before they can be translated into action. This is

consistent with Mandler's (1984) analysis of mind and emotion which interprets affective
responses as arising mainly from the interruption of plans or of planned actions.

Thus observing a student who has been asked to solve a page of symbolic problems will
provide limited affective data if this is the type of activity the student encounters every day.

However, by providing a task which is more open-ended, and by allowing students to apply

their own interpretation and emphasis within the task, students reveal more of their perception

of mathematics and of their attitudes towards the subject.

WRITING LETTERS ABOUT RECENTLY STUDIED MATHEMATICS

In the study reported here, the following task was given to 94 children who were in their final

year of primary school (Grade 6) and who were all about 12 years old. The children were in

four classes in a school set in a low socio-economic suburb of the provincial city of Geelong.

Imagine that you' have a friend who has been ill and has missed about 3 weeks of
school. Your friend has sent a message to you, asking you to explain what the class
has been doing in mathematics so that he or she can do some extra work at home to
catch up.

Write a letter to your friend describing what mathematics you've been doing in class.
In the letter, don't forget to give examples of some of the mathematics questions that
your friend would need to be able to answer so that he or she could catch up. Make
sure you explain how to answer these questions.

Table ,1 summarises the children's responses. Some children described only one mathematical

topic; others described several areas. Each topic or area listed by each child has been recorded

in the table. Thus the number of topics listed by the children will equal or exceed the number
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of children. Brief background details concerning the four mathematics classrooms used in this

study are given in Table 2. Note that the teachers were not present at any time either while the
children were given the task or while they were working on it.

Table 1: Mathematics topics described by children in this study

1 x A 1. 1 ,1
4. .2 IP T, )1.

miss c 1 2 15 3 2 1 1.1

Mr E 9 8 6 3 13 4 2.2

Mr L 7 25 2 1.2

Mr U 2 12 8 2 1.0

Table 2: Background details of mathematics classrooms
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Miss C 6 rarely often no
topworgks roupwith

parent
5 long division 21

Mr E 6-7 varies often sometimes i lir/w8 often 13 graphs 21

Mr L 6 sometimes rarely . no sometimes 14 fractions 28

Mr U 41 sometimes sometimes iihr/wk sometimes 15 revision
topics

24

Of the four teachers listed, Mr E had intentionally tried to integrate mathematics across all areas
of the curriculum. When he saw the write-a-letter task, he felt uncertain about whether the
children would be able to identify mathematics from the contexts in which he had presented

different topics. Pie graphs, for example, had been introduced in geographic and expenditure

settings. Some children in this class initially responded to the write-a-letter task by telling me
'We don't do maths', to which I responded 'Just think about what maths you've done'.

The most striking aspect of the data presented in Table 1 is the spread of mathematical
examples given by children in Mr E's class in contrast, with the narrower focus of responses

by children in the other classes. This suggests that, not only were the children able to identify

as mathematics the topics presented in other areas of the curriculum, but they, werebroader in

their interpretation of the task than their peers in the other three classes. They did not restrict

themselves to only one specialised aspect of mathematics. Most children in Mr E's class
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identified at least 2 topics, and only four children listed just one area. This contrasts strongly

with Mr U's class in which each child described only one mathematical topic in the letter.

Except for two children, all those in Miss C's class described either long division, area or

percentages as one of their topics. One of the two exceptions described tables practice and this

could be interpreted as being associated with estimations and calculations for long division.

The other exception was a boy who listed 'addition sums' as the topic. His achievement on

other mathematical. tasks was low, and may indicate a reluctance on his part to describe long

division, a topic in which he had little confidence.

Similarly, in Mr L's class, only three children did not include fractions as one of their topics.

The exceptions (2 boys and a girl) achieved very low success rates in simple mathematical

tasks, and found it difficult to express themselves in their letters. The girl, for example, wrote:

'We have had some maths but not much maths. We have been doing sheet nearly all the time'.

She continued by (cleverly) avoiding a description of the maths on the sheet by writing: 'I will

ask Mr L. if he could get some of these sheet and I will give them to you on Friday'. Both

boys gave multiplication examples. The letter Mark wrote is reproduced below.

Dear ,

Ube Viaue- cicktc) 1.As of
Mora

ck
0.1.412tc A-;(-4-vus

os I ciaA irk-tem

(gn 0008 . From bX6::: 3 6

IIX

X 8

cAX

a,,( 4.11_

5X5=75
Again, one gets the impression that the children were being careful to keep their letters within

the limits dictated by their own skills.

Mr U. placed less emphasis on mathematics than the other teachers, spending about two hours

less per week on the subject than his colleagues. He had been revising different areas over the

weeks prior to the task described here, and the children's responses were consistent with this.

In general, the letters written by the children in Mr U's class were very brief and contained less

descriptive detail and more symbolic notation than those written by children in the other three

classes. On the other hand, letters written by children in Mr E's class contained more
descriptive detail and less formal algorithmic process description than those composed by other

children. The letters written by Miss C's and Mr L's children concentrated on describing the

processes involved in the calculations.
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CHILDREN'S LETTERS REFLECT CLASSROOM EXPERIENCES

The children's responses have echoed their experiences in the mathematics classroom. Where

algorithmic detail has been emphasised, this is reflected in the children's responses (Miss C's

class), and where mathematics has been consistently presented as short episodes on one topic,

this, too, is mirrored (Mr U's class). In sharp contrast are the broader mathematical
experiences of children in Mr E's class in which mathematics could come into the discussion in

any subject area. The children's letters mirror this; they are more general and cover a broad

topic range. Mr Es children have perceived mathematics to belong to more broadly defined

areas, with no single topic standing out in importance for attention in the letter, although

graphical representations (which had been encountered most recently) were referred-to by more

than half the children.

SOME EXAMPLES OF LETTERS WRITTEN BY THE CHILDREN
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From Mr L's class
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From Mr U's class
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A USEFUL TOOL FOR STUDYING CHILDREN'S PERCEPTION OF MATHEMATICS

Providing children with a situation in which they need to describe recently encountered

mathematics achieved the following:

1. It de-emphasised individual children and helped them to focus on someone other than

themselves. It was then not obvious to the children that their responses could reveal personal

attitudes and perceptions. (The question did not simply ask 'What mathematics have you been

doing recentlyT)
2. The task forced several decisions such as: What is mathematics? What mathematics have

we done recently? Can I describe it? How should ! describe it? What does my friend need to

know? What can I leave out? In Mandler's (1984) terms,, the write-a-letter task is an
interruption which will arouse the individual's nervous system. This response will make itself

apparent as surprise, frustration, enjoyment or the like, and this, in turn, will be reflected in

the type of written response given by the children.

A brief letter with no detail may imply little enthusiasm for mathematics' (or poor
understanding), for example. Several children used the opportunity to boost their self-esteem

by saying that these problems were easy, or, like Mark in the letter to Lonnie, 'I think I can

them good'. Generally, the children controlled their own emotions sufficiently to keep them

implicit in their responses rather than explicit. However, an example is reproduced here in

which the child's emotions were stirred to the point of becoming dominant in the letter.

The letter to Ben is really a cry for help

from a child who is finding mathematics

very difficult. This task proved to be a

powerful way of tapping his feelings
about mathematics, and helps to
establish that this indirect method
provides a valuable way of gaining
access to the affective domain.
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THE ATTITUDES AND PRACTICES OF STUDENT TEACHERS
OF PRIMARY SCHOOL MATHEMATICS

Paul Ernest

University of Exeter School of Education

A group of student primary school teachers were studied with
regard to : Knowledge of mathematics (subject specialism),
Attitude to mathematics, displayed Confidence and Liking of
mathematics teaching (during practice), and Approach to
mathematics teaching (open vs. closed). The Mathematics
specialists tended to have positive attitudes to
mathematics, and to its teaching, but varied in their
approach to teaching mathematics: only 40% adopt a creative,
problem solving approach. The students with low levels o:
knowledge of mathematics are more varied in their responses.
It seems that attitudes to mathematics are less significant
for these students than attitudes to teaching mathematics,
which (latter) correlate with teaching approach.

It is often claimed that there is an important relationship between the

attitudes of teachers, especially to mathematics, and effectiveness of

teaching (Bishop and Nickson 1983). The argument is that teacher

attitudes influence student attitudes, which have a powerful influence

on learning. Indeed a number of researchers have found a significant

correlation between teacher attitude and student achievement in

mathematics (Begle 1979, Bishop and Nickson 1983, Schofield 1981)

Research has shown that the picture is more complex than this

simple argument suggests, for two reasons. First of all, although many.

researchers have confirmed the existence of a relationship, the

correlation between mathematical attitude and achievement is weak (Begle

1979 , Bell at al 1983). The second source of complexity is the multi-

dimensional nature of attitude to mathematics. Recent attitude research

-distinguishes a number of different components of attitude to

mathematics as a whole, as well as to specific mathematical topics

(Aiken 1976, Schofield and Start 1978, Kulm 1980, Bell. et al. 1983). In
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addition, there is also the teacher's attitude to the teaching of

mathematics. & priori there is every reason to believe that attitude to

teaching mathematics may be Just as important a factor. On the basis

of these considerations a question arises: what is the relationship

between attitudes to mathematics and attitudes to its teaching? In

addition to interest in the achievement outcomes of mathematics

teaching, the Nineteen Eighties has seen an increased concern with the

approach or style of mathematics teaching. Official bodies such as the

NCTM (1980) in the U.S.A. and the Cockcroft Committee (1982) in the U.K.

have strongly recommended the adoption of a creative, problem-solving

approach to the mathematics teaching. This raises a second question: to

what extent are student teachers' attitudes related to their style of

teaching mathematics?

THE STUDY

This is a report of an investigation of a group of student primary

school teachers, with regard to their attitudes towards mathematics, and

their manifested attitudes and practices in teaching mathematics. In

addressing the above questions, the study focusses on the variables:

1. knowledge of mathematics (on'the basis of student course specialism)

2. attitude towards mathematics (a combination of their liking of the

subJect and confidence in their mathematical ability)

3. Liking and enthusiasm for the teaching of mathematics, and

4. Confidence in their ability to teach mathematics (as demonstrated

during, their first period of practice teaching)

5. Teaching approach in mathematics (creative and exploratory versus

narrow and basic computation skills oriented)

The sample consists of 30 students attending a Bachelor of Education

Degree course, at an English university. In addition to their primary

teaching studies, each student specialises in an academic topic: 10

study Mathematics or Science as their main academic subject (henceforth,

the M&S students), 20 study French, History or English (the FRE

students). The sample consists of the 30 students whose supervising

tutors on teaching practice cooperated by completing a mathematics

teaching observation schedule.
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KNOWLEDGE OF MATHEMATICS

The M&S students all have a pass in Mathematics at GCE 'A' level,

indicating successful specialist study of mathematics from 16 to 18

years of age, and in addition, they study mathematics in their

'undergraduate course. None of the FH&E students (with one exception)

have `a pass in Mathematics at GCE 'A' level, nor do they study

mathematics in their undergraduate course. All 30 of the students have

passed Mathematics at GCE '0' level (at age 16) and have taken a Primary

Mathematics Curricul'um course as undergraduates.

ATTITUDE TO MATHEMATICS

Attitudes were measured by means of a questionnaire, adapted from Dutton

(1965), made up of statements concerning liking of and enthusiasm for

mathematics, and confidence in mathematics. The overall score is taken

to give an undifferentiated measure of 'attitude towards mathematics (as

a whole)'. Marks range from 15 to 75 and a score of 40- 50 is taken as

indicating a neutral attitude to mathematics. Scores of over 50 (60) are

taken as indicating a positive (very positive, respectively) attitude to

mathematics.

The questionnaire was administered 4 times during the 18 morfths of

the course, and the overall pattern of attitudes remained more or less

constant over the four testings; there was no significant shift in

attitudes to mathematics. The test-retest reliability of the last two

testings is 0.86. Responses to the questionnaire (fourth testing) are

shown In Table 1, below.

TABLE 1 : Student Teachers' Attitudes to Mathematics

STUDENT GROUP' SIZE MEAN SCORE S.D. INTERPRETATION

OVERALL 30 48.2 10.8 NEUTRAL

FH&E 20 44.1 10.2 NEUTRAL

M&S 10 56.6 6.5 POSITIVE
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As the large standard deviations in Table I. suggest, there is a

considerable spread in the attitude scores, particularly in the FH&E

students. This is shown in Table 2, below.

TABLE 2: The Distribution of Attitudes to Mathematics

ATTITUDE TO ALL (30) NUMBERS OF NUMBERS OF

MATHEMATICS STUDENTS M&S STUDENTS FH&E STUDENTS

VERY POSITIVE [ >60 ] 3 (10%) 3 (30%) 0 (0%)

POSITIVE [ >50 ]. 12 (40%) 6 (60%) 6 (30%)

NEUTRAL [ 40 50 ] 7 (23%) 1 (10%) 6 (30%)

NEGATIVE-[ <40 ] 6 (20%) 0 (0%) 6 (30%)

VERY NEGATIVE [ <30 ] 2 (7%) 0 (0%) 2 (10%)

Table 2 shows that one half of the 30 students have a positive attitude

to mathematics, and that one quarter of the students have a negative

attitude to mathematics. In terms of subject groupings: almost all of

the M&S students (90%) have a positive attitude to mathematics, and none

negative. The picture is quite different for the FH&E students; only 30%

of the students have a positive attitude to mathematics, leaving 70%

without a positive attitude to mathematics (a subject they will be

required to teach to children). Fully 40% (If these students have a

negative attitude to mathematics

OBSERVATIONS OF THE STUDENTS' TEACHING

During the first teaching practice all of the student teachers taught

mathematics for a significant proportion of their time (a mean of 3.5

hours out, of 15 hours per week: 23% ). Supervising tutors completed a

questionnaire on the students' teaching of Mathematics, focussing on a

number of factors, including the student teachers':

1. Confidence in teaching mathematics

2: Liking and enthusiasm for the teaching of mathematics (this includes
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professed liking, as well as enthusiasm displayed during the teaching of

mathematics)

3. Teaching approach in mathematics: creative and exploratory versus

narrow and basic computation skills oriented, as evidenced by the use of

problem solving and investigation tasks, the use and encouragement of

exploratory discussion of mathematical ideas, the degree of

concentration on basic computational skills and the teaching that there

is a single correct method for each mathematical task.

A summary of the observational data is given in Table 3, below.

TABLE 3: Observational Data on Students' Teaching of Mathematics

CONFIDENCE IN TEACHING MATHS

ALL

STUDENTS

HAS

STUDENTS

FUSE

STUDENTS

Confident in Maths Teaching 20 (67%) 9 (90%) 11 (55%)

Lacking in Confidence 10 (33%) 1 (10%) 9 (45%)

LIKING OF MATHS TEACHING

Like of Maths Teaching 21 (70%) 8 (80%) 13 (65%)

Neutral 2 (7%) 0 (0%) 2 (10%)

Dislike of Maths Teaching 7 (23%) 2 (20%) 5 (25%)

APPROACH IN TEACHING MATHS

Creative & Exploratory 8 (27%) 4 (40%) 4 (20%)

Intermediate in Approach 16 (53%) 3 (30%) 13 (65%)

Narrow & Computation Oriented 6 (20%) 3 (30%) 3 (15%)

Table 3 . shows that two thirds of all of the student teachers are

confident about their teaching of mathematics, and this includes nearly
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all of the M&S students (90%), but only just over one half of the other

students (55%). Almost one half of the non Mathematics and Science

specialists (45%) lack confidence in their ability to teach mathematics,

an activity which is likely to occupy a large part of their professional

life.

Again, about two thirds of all of the students (70%) like, or

display enthusiasm whilst teaching mathematics, and this includes most

of the M&S students (80%) and about two thirds of the other students

(65%). About one quarter of all of the students dislike the teaching of

mathematics, and do not display enthusiasm while teaching it, whatever

their subject specialism (20% of M&S students and 25% of FH&E students).

With regard to their teaching approach in mathematics, about one

quarter (27%) of the students employ a creative and exploratory

approach, one fifth (20%) employ a narrow, basic computational skills

oriented approach, and one half are intermediate ih approach (53%). The

proportions of student teachers employing the approaches varies with

specialism. Most (6%) of the FH&E students employ an intermediate

approach, while most of the M&S students employ one of the more extreme

(that is, more strongly characterised) approaches to the teaching of

mathematics, namely 70% (M&S) as opposed to 35% (FH&E).

THE RELATIONSHIPS BETWEEN THE VARIABLES

Considering the students with high levels of knowledge of mathematics

(the M&S students): they tend to have positive attitudes to mathematics,

tend to be confident with regard to their ability to teach mathematics,

and tend to like and display enthusiasm during the teaching of

mathematics. However, these students do not tend to adopt acreative:

exploratory approach to the teaching of mathematics, only a sizable

minority (40%) of them do. Another sizable minority (30%) adopt a

narrow, basic computation skills approach to the teaching of

mathematics. This second grouping does not consist of those M&S students

with less positive attitudes, -lower levels of confidence in, or liking

of teaching mathematics. On the contrary, the students with the most

positive attitude to mathematics aria the student with the highest level

of confidence in teaching mathematics belong to this group. Thus it
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appears that for some students, the teaching approach adopted is

unrelated to the other variables considered.

A conjectured explanation for this involves the students'

conceptions of the nature of mathematics. M&S students are likely to

view mathematics more as a precise, structured body of truths and

methods, or as a more dynamic, creative problem solving activity. Either

way, the students can have positive attitudes and a liking and

confidence in their teaching of mathematics. What is likely to vary is

their teaching approach; students with the former view may tend to

approach school mathematics as a rather narrow, computational oriented

activity. The latter view may lead to a creative, exploratory approach

to the teaching of mathematics (Lerman 1983, Thompson 1984, Ernest

1987). This conjecture accounts for the varying teaching approaches of

the M&S students. Needless to say, it remains speculation and requires

further empirical investigation (currently in progress).

Concerning students with low levels of knowledge of mathematics

(namely the FH&E students): there are no correlations between any two of

confidence in teaching mathematics, liking of teaching, and attitude to

mathematics. This is perhaps surprising, and is contrary to the

experimenter's expectations. With regard to teaching approach, there is

a correlation with liking of teaching mathematics ( for FH&E students

only): a creative, exploratory approach to the teaching of mathematics

is correlated to some extent with the students'. liking and displayed

enthusiasm in the teaching of mathematics. However this correlation is

not statistically significant (Pearon's product moment coefficient

takes the value 0.32, which is not significant at the 5% level, using

the F-test).

It seems that the FH&E students are able to separate attitude to

mathematics, and attitude to, its teaching, and that other factors than

these have more influence on confidence in teaching mathematics. It can

be conjectured that liking ana enthusiasm for teaching and teaching

approach are both influenced by the students' conceptions of the nature

of mathematics. A narrow, instrumental view of mathematics as a set of

facts and skills is likely to lead to a basic skills oriented approach

to teaching mathematics, and an attitude to teaching mathematics as an

uninteresting chore. A more creative view of mathematics is more likely
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to lead to a creative, exploratory approach to teaching, and enthusiasm

and liking for the teaching of mathematics.

What this study suggests is that attitude to mathematics may be

less important than many previous authors have assumed. Mathematics

specialists do have a positive attitude to mathematics, but their

knowledge of mathematics is likely to lie behind this, and may be the

more important factor. For teachers with lower levels of mathematical

knowledge attitudes to the teaching of mathematics may be the more

important attitudes, as it is these that are associated with a more

creative, problem solving approach to mathematics, in the present study.

It has also been conjectured that the students' philosophy of

mathematics may be an important underlying factor.
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CONTEXTS AND PERFORMANCE IN NUMERICAL ACTIVITY AMONG ADULTS

Jeffrey T. Evans
Middlesex Polytechnic, Enfield, U.K.

This is an ongoing report from a study of the ways
in which the performance of adults in numerical
activity may be related to the context. In
scanning the literature to see how the concept of
"context", and its relationship to performance,
are discussed, I find that a variety of aspects of
context are focussed on, yet the way context is
specified in empirical work is often somewhat
flimsy. Further, many studies which purport to
view context as important still report results in
a way that suggests that it is something grafted
on to a "generic" skill, or neatly separable from
an abstractly-conceived task .
This paper is about my attempts to apply an
alternative analysis to interviews with adults
about a range of numerical problems.

THEORETICAL FRAMEWORK

A literature review of the idea of "context" suggested the

following aspects were important for mathematical.activity:

material resources e.g. computational technology; goals,

beliefs, values; language and "codes"; basis in a social

group, social relations; emotional charge (e.g. Maier, 1980;

d'Ambrosio, 1985; Cobb, 1986; Carraher and Schliemann, in

press).

Yet most research which purports to study different contexts

allows only a fairly "one-dimensional" variation. Thus, for

example, the U.K. Assessment of Performance Unit (A.P.U.),

initially took different "contexts" in the written tests to

mean different backgrounds for word problems; e.g., whether a.

question on ratio was about scoring in a game, or about
.

sharpening numbers of pencils (Foxman et al., 1985, pp.151ff.),
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However, the APU, firSt in the one-to-one practical tests, and

from 1987 in group practical tests, has extended its work into

other aspects of context mentioned above : language (both

written and spoken answers); the material resources

(specifying the calculators, etc. available), and social

interaction (in the group practical interviews).

Also, ethnographers have aimed to describe in detail the

numerate strategies used in work and everyday life (e.g. Lave

1985; Carraher and Schliemann, in press). These studies

document the distinctive character of "folk maths"

strategies, and their effectiveness, 'in context. However,

their use outside their normal contexts is problematical :

thus, for example, the Brazilian street vendors who

successfully perform many relevant calculations daily in their

heads find "similar" calculations, using pencil and paper,

outside the market context, much more difficult, and make many

more errors.

In relating performance and context, the fundamental problem

is that, of deciding whether completing the two types of sum,

which would appear the same to a mathematics educator, are

. the same task in different contexts", or "different tasks".

Of course, in order to make comparisons between performance

levels in school and "practical" contexts, as several

researchers have done, you must presuppose that the answer to

the above dilemma is "the same task in different contexts".

On the other hand, some researchers have challenged this

position (e.g. Lave et al., 1984; Walkerdine., 1988). They have

insisted that mathematical activity and context cannot be

neatly separated : they are mutually influencing, and both are

shaped and made meaningful by the larger activity or

practice(s) of the subject. The latter are theMselves shaped

and made meaningful by language. Most practices have some

numerate aspects and include procedures for making

calculations, measurements, etc.

Practices make available certain "positions" (of power) to

people; thus, for example, formal education makes available

positions as "teacher" and "pupil". Positions may be different'

for different social groups or cultures; thus "going out for

dinner" may have a different meaning for men and women.
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For a person in a given situation, a particular practice (or

occasionally, more than one) is "called up" as relevant for

making sense of it; this conditions their conception of the

"task", what "skills" they deploy, and the "emotions"

experienced.

These ideas led to two research questions for the interviews

discussed below :

Question (1) 'Which practices are called up by the problems

posed in the interview ?

Question (2) What are the differences in performance between

practical maths and school maths in interview ?

In response, my provisional conjectures were :

(1) There are two main practices with related positions,

available in this situation, viz.

(T) College maths, with positions : teacher/student; and

(R) social research with positions : researcher/respondent.

Here, (T) may tend to be called up far more frequently than

(R)

(2) To the extent that (R), rather than (T), is called up,

students will have more access to "skills" etc. from practices

other than school maths. They will experience fewer negative

"emotions", and will "perform" better.

METHODOLOGY

The setting was a U.K. Polytechnic with a relatively high

proportion of 'mature' students (over 21 years of age,

returning to study after some years of work or child-care).

A number (n=25) of interviews were conducted in 1985 and 1986

with Social Science degree students at the end of their 1st

year ( which includes a maths/stats. course). They were

presented with a number of "practical" problems e.g. reading

graphs, deciding how much (if at all) they would tip after a

meal, deciding which bottle of tomato sauce they would buy

and were asked three questions for each :

(i) which of their current activities it reminded them of;

(ii) how they were thinking about the question , and their

answer; and 315
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(iii) what the problem reminded them of in their early

experiences with numbers.

In order to ascertain which practice was called up, I drew

on various indicators (Walkerdine, 1988, Ch. 3) :

(A) the explicit discursive features of the task/situatidn :

* e.g. how the task was introduced, in the interview "script"

: as "maths", "test", "research", "views", etc.

(B) "unscripted" aspects of the researcher's performance :

* e.g. different verbal or vocal signs for "correct" and

"incorrect" answers;

(C) responses and comments given by the student during the

interview :

* the language used in answering the problems;

* especially the response to question (i) above;

(D) reflexive accounts.:

*e.g. the ways in which I had been in the position of "maths

teacher" to each student.

The indicators of "performance", its "level" and quality, were

* what the subject said while thinking about the problem;

* how it was said; and

* the apparent "correctness" of the response.

RESULTS

Some findings have already been reported, especially about

gender differences in affective response / maths anxiety

(Evans, 1987). Here, several "episodes" from one interview

will be preiented, to show how this methodology can be'applied.

to the interview transcripti, and to illustrate the results.

These relate to interview no. 10 - male, middle class (by own

occupation) .7 working class (by parents'), aged in his

forties. He had worked in the money markets in London's

financial area before joining the course, to qualify. in Social

Work or.Town Planning.

1. As withall students, a number of practices with numerate

aspects were called up at different points of the interview;

for example :
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- providing for a household, by considering whether to
install a water meter (in response to a pie-chart showing
water use by various sectors of the economy);

school maths and college maths ;

several work practices _(see below).

What was rather less typical was his ability to think across
several practices in the same episode. For example, in
response to a graph showing how the price of gold varied in
one day's trading in London, students were asked : "Which part
of the graph shows where the price was rising fastest? What

was the lowest price that day?"

JE : Does that remind you of anything that you do these

days,. or you've done recently?
.

S : Er, some of the work we done in Phase One <the first

two terms of the College course>,. but if you ask me
straight out of my head, what it reminds me of I

worked once with a credit company and we had charts on

the wall, trying to galvanise each of us to do better

than the other (JE: uh huh), and these soddin' things
were always there and we seemed to be slaves to the

charts...< 6 lines of transcript>...That's what that
reminds of a bad feeling in a way I felt that a
human being was being judged- by that bit of

paper....<pp. 8-9 of the transcript>

Here we notice that the student is reminded both of his course
-1 "College maths" and of his earlier practice of managing a

sales team.

2. For many students, negative affect is part of school maths
or College maths. For several subjects, including this one in

this episode, "bad feeling" is associated with "work maths".

3. In the next episode, the student begins by mentioning

college maths, then seems to link work maths with it.

JE : ...Does it remind you of Phase One?

S : Yeah , well, we -done some of the questions like

this, and ,er, the RUN over the RISE and that kind of

thing...<5 sec....trends, I suppose'if you were- judging

a trend ...<2 lines of transcript>...I like the fact I
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can do a chart now (JE : uh huh), but even to do a chart

like that now , I couldn't sit down and do it straight

away...<3 lines>...With maths I have to go back to the

basic things all the time....<pp.10-11>

Here he uses the language of College maths, describing the

gradient as "run" over "rise" . He then seems to call up work

practices at the same time, given that the terms 'trend'

(rather than 'gradient') and 'chart' (rather than 'graph')

were not used in the teaching in Phase One.

4. We now need to consider whether this apparent ability to

transfer elements from one practice to another will help in

performance. In this second episode, he has described the

gradient as "run" (X2-X1) over "rise" (Y2-Y1) whereas it is

the inverse! At this stage it is difficult to know whether

this is due to a memory slip, or to a more basic

misconception. In the next episode, he is asked specific

questions about the graph.

JE : Right , okay, may I ask you which part of the graph

shows where the price was rising fastest?

S : If I was to make an instant decision, I'd shy that

one, but obviously want to make it on a count of the

line, wouldn't I? <JE : You'd?...> I'd count a line <JE

: Uh huh> as it goes up...<25 sec.... eleven over six

and ten over six, so that one's right in the first

one...

JE ...< 2 lines>... And , um what was the lowest price

that day?

S : This one here five hundred and eighty ...<1 line>

...went higher at the close, for some reason...<p.12>

Here we note that, when he is asked to compare the gradient of

two lines, he makes a perfectly accurate "instant decision",

presumably drawing on his work experience. However, he feels

impelled to "count a line", which I take to mean : calculate

the gradient by counting squares on the graph, as in college

maths. There he gets the correct answer confirmed presumably

by his earlier work practice decision though his

calculations are approximate, as is his reading of the lowest
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price. At the end of the last episode, he is back in the

"money market" practice, as shown by his speculating about the

graph's going -higher at the close, for some reason..." Here

it appears that the successful transfer from work practices to

college has supported his performance in the latter.

PROVISIONAL CONCLUSIONS

Analysis of the remaining interview transcripts is underway,

aimed at critically assessing_ these developing ideas :

1. We can make a reasonable judgement about what activity /

practice a respondent has called up, by using the indicators

discussed above. These practices are pervasive in shaping or

"constructing" task and context.

2. What practice has been called up will relate not only to

the "correctness" of performance, but also to the language and

reasoning used with the problem.

3. More confused , less "correct" performance may be observed

when school / college maths is called up, not only because of

memory failure, "misconceptions" etc., but also because of

differences in familiarity, and the emotional charge that is

part of a practice. Put another way, familiarity is affective,

as well as cognitive. (cf. Evans, 1987).

4. Other practices , and their numerate aspects,are not always

positively charged affectively. Therefore, the learning of

school maths is not necessarily helped by drawing on practical

maths examples (see also Adda, 1986).

h. Nor is the 'transfer" of "skills" or concepts from school

maths to practical maths or from non-school practices to

school or college maths at all straighforward, because of

differences in language, resources, social relations and

emotional associations between different practices. (For

further specifics, see Walkerdine, 1988, Ch. 4).

399
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PRE-SERVICE TEACEIERS CONCEPTIONS OF THE RELATIONSHIPS
BETWEEN FUNCTIONS AND EQUATIONS

Ruhama Even
Michigan State University

ABSTRACT

Knowledge and understanding of the relationships between functions and
equations as perceived by prospective secondary mathematics teachers (N=152) in
the last phase of their professional education was investigated. They were asked
to write a definition of a function, to indicate how functions and equations are
related to each other, and to find the number of solutions to a quadratic equation,
given a positive value and a negative value of the quadratic expression. The
findings suggest that these students hold a limited view of functions as equations
only, they do not have a way of making sense of the modem definition and lack
the ability to relate solutions of equations (algebraic representation) to values of a
corresponding function (in graphic representation).

Teachers' subject-matter content knowledge and pedagogical content knowledge

influence, of course, their teaching and therefore their students' learning. Teachers get their

professional education from both subject-matter and education courses. But we do not

know enough about the knowledge they have and how they use it. This study concentrates

on prospective secondary mathematics teachers' knowledge and understanding of one of the

most important concepts in mathematics - the concept of FUNCTION.

The relationships between functions and equations are part of the concept of function;

here we will report on this aspect of the prospective teachers' knowledge

BACKGROUND OF THE STUDY

We will deal with two factors of the relationships between functions and equation

One has to do with the role of equations in the concept definition and concept image of

functions. The other has to do with the relationships between values of a function and

solutions to an equation.

a) The role of equations in the definition and image of functions.
The definition of functions has changed during the last two centuries. While an 18th

century function was an analytic expression, representing the relation between variables,
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with its graph having no corners (referred to as Elder's definition), in the 20th century

function came to be a subset of the Cartesian product of two sets in which each member of

the domain is paired with exactly one element of the range, or a less formal definition: A

correspondence between two sets that assigns to each element from the first set exactly one

element from the second set (Dirichlet-Bourbald). 200 years ago functions were equations

that described the relation between two variables using algebraic expressions. Today's

definition of functions is not so limited. Functions do not have to be graphable, to be

representable by equations, and their domain and range may be sets of objects other than

numbers. Malik (1980) claims that the necessity of teaching the modern definition of

function at school level is not at all obvious. He says that Euler's definition from the 18th

century covers all the functions used or required in a calculus course, and up to this stage

one never confronts a situation where one has to use the modem definition of function.

Malik concludes that. since only a particular form of functions is used, the student

unconsciously accepts this particular form as the definition. Other studies also show that

while students are being taught the modem definition of function, the old one serves as the

concept image for these students (Mamyanskii, 1965; Markovitz et al, 1986; Vinner and

Dreyfus, in press). Secondary teachers are expected to teach functions according tothe

modem definition which is used in current texts. What is the concept image offunctions for

them? Is it the earlier one or is it the modem one? What will they teach their students and

why?

b) Values of functions as solutions to equations.
Conceptual knowledge is knowledge that is rich in relationships (Hiebert and Lefevre,

1986). Sometimes it is easier to solve an equation by looking at the corresponding function

(if it exists) and relating the solutions to the graphical representation. For example, the

solutions of anxn + + aix + ao O are the x-intercepts of the graph of the function

f(x) = anxn + at x + ao. Flexibility in moving from one representation to another allows

one to see rich relationships and to develop a better conceptual understanding. So, when

given a familiar algebraic expression in a problem situation it is desirable for students to be

able to make connections between the expression and its corresponding function's graphical

representation. How flexible is the teachers' understanding of function?

METHOD

The subjects of this study are prospective secondary mathematics teachersin the last

phase of their professional education, they are finishing or have already finished their
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mathematics methods class. Almost all of them are seniors, a few are juniors or post
baccalaurete students. This group was selected so that the description of their knowledge
will reflect the knowledge teachers have gained during their college education, but before
they start real teaching in the field. The subjects come from eight mid-western universities
in the U.S.A. who agree to participate in the study.

Data is being gathered in two phases. At the fust phase, an open-ended questionnaire
is being administratered to the subjects. Information gathered from a written questionnaire
is sufficient for a general description of some facets of the teachers' knowledge, but is
limited and sometimes hard to interpret In order to overcome these difficulties the second
phase includes interviews with about 10% of the subjects. By probing, asking subjects to
explain what they did and why, asking for their reactions as teachers to students'
misconceptions and asking questions which are related to the questionnaire but require more
general, longer or more thoughtful responses, a more accurate and detailed picture of the
subjects' subject-matter content knowledge and pedagogicalcontent knowledge may be
developed.

RESULTS

The report here is based on the first phase which has already completed. 152 subjects
have answered the questionnaires.

\ a) The role of equations in the definition and image of functions.
When asked the following question: Givea defriltioa of a fraction , 33 subjects (out

of, l46 who answered this question) defined function as an equation, an algebraic
expression or a formula.

"A function is an equation with a one-to-one correspondence between the variables".
"An equation which satisfies the following requirements..."
"A function is a numerical expression that ..."

A strict categorization was employed to subjects' responses. Unless the words
"equation", "algebraic (numerical) expression", or "formula" were mentioned, responses
were not included.

When asked the question: How are functions and equations related, to each other? , an
additional 26 subjects said that functions are equatkins or that rules for functions are
equations (without any additional remarks that some functions may not be representable by
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equations).

"All functions can be written as equations, but not all equations are functions"

"They're the same thing."

"A function is really an equation."

47% (59 out of the 126 subjects who answered both questions) relate functions only to

equations in at least one of their answers.

Table 1 categorizes the responses to the two questions with regard to the relationship

between functions and equations.

Table 1- Categorization and distribution of respopses to relationship between

functions and equations in the two questions.

Relationship between
functions and equations,(b)

Defined function as an equation00
I

No
I

Yes No answer 'Total N

Functions are equations 12 26 1 I 39

Equations are functions 8 26 1 35

Some functions are equations 1 7 0 8

Some equations are functions 3 18 0 21

Other 9 34 3 I 46

_ No answer 3 17 1 i 21

Total N . 36 128 6 176(0

(a) As an equation, an algebraic (numerical) expression or a formula.

(b) We didn't distinguish between responses that considered equations to be functions or

only rules of functions, etc.

(c) The total is greater than the number of subjects since some subjects belong to more

than one category, i.e., 6 subjects claimed that functions and equations are the same

thing, and were put in the first two categories of the question about the relationships
---

between functions and equations.

35 subjects responded that equations are functions. At the same time about half of

them included in their definition of function the requirement of having one and only one

image for each element in the domain. These two contradict each other. Not only that, but
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as an answer to another question, a significant number of subjects gave "circle" or "elipse"

as examples of graphs of functions.

b) Values of functions as solutions to equations.

When asked the following question: If you substitute I for x in ax2 + bx + c (a, b and

c are real numbers); you get a positive number. Substituting 6 gives a negative number.

How many real solutions does the equation =2 + bx + c = 0 have? Explain. 45 subjects

(out of 127 who answered this question) gave the correct numerical answer: 2. But only

18 subjects (14%!) got this answer by referring to the graph of a quadratic function and
using the Intermediate Value Theorem:

"Two. The graph is a parabola by its very nature. If it is positive and crosses the
x-axis, it must cross it again."

"2. This is a parabola. the graph will be either U or (1 depending on if a is + or. If
x = 1, then y is above the x-axis. If x = 6, y is below the x-axis. It therefore must

cross the x-axis. The parabola is symmetric, so there will be 2 x-axis intercepts."

/I

About the same number of subjects (19) claimed that the number of real solutions is

two since a polynomial of degree 2 has two real solutions!

"2 real solutions because it has an order of 2".

"2 because it is of degree 2 ".

A large group of subjects (20) just "played" with inequalities without reaching any
conclusion.

"a+b+c>0 36a+6b+c50"
"a+b+c>0 36a+6b+c<0 x=-1)±4b2-4ac

the solution is real when '/b2 -4ac is real"
2a

"a+b+c>0 36a+ 6b+c<0 a+b+c> 36a+ 6b+c
0> 35b + 5a
-35a > 5b
-7a > b
a < -1/7b"

Another group considered a, b, c to be variables and reached the conclusion that there

are an infinite number of solutions:
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"Since x = 1 we have the equation a + b + c = 0. There are infinitely many real

numbers which satisfy this equation".

"(a + b + c) > 0 (36a + 6b + c ) < 0 a < 0.

(.) many dependent on changes in b and c".

"a + b + c > 0 36a + 6b + c < O. Infinite, because if b = c = 1 then a an infinite

number values for a that work".

Table 2 shows the distribution of numerical answers and methods of solution used by

those who answered the question.

Notice that 8 subjects did use the intermediate value theorem but did not consider the

special given function and therefore found only one real solution.

1 real solutions - because it will cross the x-axis in one place."

Table 2 - Distribution of the numerical answers and the methods used to find the number

of real solutions.

Method of solution

1 2 ...,

# of solutions

total Nother no answer
intermediate
value & graph 8 18 2 i 28

inequalities
or equalities 1 3 4 2 20 30

2nd degree
polynomial 1 19 4 24

a, b, c are
variables 8 1 I 9

other 2 2 12. 1 6 23

no
explanation 2 3 7 1 13

total N 14 45 31 5 32 127
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DISCUSSION

In general more than 20% of the prospective secondary math teachers defined functions

as equations. Up to 50% of the subjects showed signs of having equations as the concept

image of functions. Even if, as some might claim, this is not important for the functions

he/she meets while teaching secondary school, the teacher is expected to teach the modem set

definition of function. This might be problematic if it is meaningless to the teacher. It also

may contribute to the discrepancy between concept definition and concept image of functions

in the next generations of his/her students.

The meaningless of the modem definition to the subjects is also represented by the

number of prospective teachers who emphasized the requirement of having one and only one

image for each element in the domain but ignored this idea while dealing with functions

elsewhere. This might be an explanation for the statement "Equations are functions".

Another explanation might be that they ignored some equations when malting that statement.

In this case it seems that they lack a rich and flexible understanding which would allow them

to see a global picture.

A lack of rich relationships, which characterize conceptual knowledge, seems to prevent

the prospective teachers from relating the given equation: ax2 + bx + c = 0, to a graphical

representation of the function f(x) = ax2 + bx + c. 80% of the subjects did not make the

connection. Eisenberg and Dreyfus (1986) report similar findings when in a course which

stressed the graphical method of solving inequalities, only 5% of the college students opted

for the graphical solution on the exam. Another interesting finding shows that more than 1/4

of the prospective teachers gave answers which don't make sense at all, such as op and even

3, 4 or 5 as the number of solutions of a quadratic equation. Is it because their knowledge is

constructed in bits and pieces without connections?

The discussion here is based only on partial results from the questionnaire. These

results point to some directions which will be further investigated through interviews. More

complete findings will be reported at the meeting.
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AN EXPERIMENTAL STUDY OF SOLVING PROBLEMS
IN ADDITION AND SUBTRACTION BY FIRST-GRADERS

CAO FEIYU AND CAI SHANGHE

CURRICULUM AND TEACHING MATERIALS
RESEARCH INSTITUTE, CHINA

ABSTRACT: The experiment held in 3 classes of 2 primary
schools stressed the study of the range of the problems in
addition and subtraction that should be solved by first-graders,
the structure of the relevant teaching materials and the
methods of teaching for the development of children's
problem-solving and thinking abilities. The results of the
experiment indicated 'that first-graders are able to learn to
solve general problems in addition and subtraction if the
teaching materials are well-organized according to the inner
link of the problems and the teaching stages are appropriately
divided according to the characteristics of children's cognition,
and the selection of appropriate teaching methods, especially
the emphasis on manipulation, the guidance for the children
in analysing the information given in the problems an their
relations and training them to express their thinking in
language greatly promote the development of their
problem-solving and thinking abilities.

I. Background and Purpose

There are certain difficulties in teaching low-graders to solve problems
in addition and subtraction both at home and abroad. Many children don't
get good results in their studies. There are quite a few causes, among which
are the problems both in the teaching materials and methods. Studies and
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experiments on how to teach low-graders to solve problems in addition and
subtracton have been carried out both in China and in other countries for
the past few years. And there exist different views. For instance,concerning
the range and the types of problems in addition and subtraction , some
people in China consider it is enough to divide the problems into 2 groups:
problems concerning the relation between the sum total and the partial
number and problems comparing the difference between 2 numbers. M.
Moro of the U.S.SR. thinks the following three types necessary : problems ,
showing the meaning of addition and subtraction , problems comparing the
difference between 2 numbers and problems telling the relation between
the known number and the result in addition or subtraction. M. Riley and
others of the U.S. hold that problems in addition and subtraction should be
divided into the following categories: changing, equalizing , combining and
comparing. As to their arrangements, some favour the separate teaching in
the first two grades, while others (including M.Moro) maintain the teaching
in separate groups in the first grade. As to the teaching methods, some
researchers in our country prefer to teach the children the types of
problems and their names as well as the formula showing the numerical
relation for each type of problems. But there are quite a few who don't
agree to such kind of teaching

For this purpose, the present experiment lay more stress on the study of
the foUwing questions:

(1) How should the range of the problems in addition and subtraction be
decided? Generally speaking, can the first-graders learn to solve these
problems?

(2) How can the problems in addition and subtraction be arrranged
according to the psychological characteristics of the first-graders so that
they will be easy to learn ?

(3) How should children be taught to solve the problems in addition and
subtraction and helped to develop their thinking ability?

II. Process of the Experiment and Improvements

The following improvements in the teaching of problems in addition and
subtraction have been worked out in our experiment:

1. The problems appeared in the experiment are identical to those
appeared in the math teaching materials for low graders with the increase
of problems for finding out the subtrahend. And one-step problems in
addition and subtraction should be finished learning in Grade 1.

2. The problems are arranged in the following stages:
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(1) Solving problems shown in pictures at the beginning of Grade 1.
Gradually one of the informations given in a problem is shown in figure
instead of clearly drawn out.

(2) Solving problems with both pictures and characters.
(3) Solving word problems; which are divided into three groups,

proceeding from the easy to the difficult
(4) Doing exercises in problems for supplying missing questions or

missing data and making-up problems after the learning of each type of
problems.

3. The methods for teaching problems in addition and subtraction are
improved:

(1) The manipulation with objects by children themselves and
demonstration by teachers are strengthened.

(2 )The structure of the problems and analysis of numerical relations are
stressed.

(3)The ways of solving the problems are closely linked with the meaning
of addition and subtraction.

(4)Pay more attention to the guidance and inspiration for children to
think

(5 )Give more exercises in comparison and variation.
Our experiment was first held in 3 classes of 2 urban primary schools.

The teaching materials were compiled by ourselves. And we prepared the
lessons with the teachers taking part in the experiment before each class .

We listened to most of the lessons, took notes and looked over the exercises
done by the pupils. There was a quiz for each stage: All the notes and the
results of each quiz were studied and analysed.

III. Results and Analyses

1. During the 1st term of Grade 1 the transition from problems in
pictures to word problems is successfully realized.

2. Our experiment proves that the arrangement of the problems in the
teaching materials is conformed to the laW for children's cognition
action, perception -- image -- concept'. When children are taught to solve

problems at the beginning, manipulation with objects by themselves should
be strengthened, because, compared with mere demonstrations by
teachers, it will deepen the children's understanding of the meaning of
addition and subtraction and enable them to gain vivid impression on the
structure of the problems, make clear their numerical relations and choose
the correct way for solution.
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CORRECTION RATE FOR 6 PROBLEMS IN 1ST TERM, GRADE 1
(Final Exam)

Problem
type

Problems
for the sum

Problems
for remainder

Problems
for 1 addend

Average
correction rate

Number of
pupils with
correct
answers(%)

92.7% 91% 92% 91.8%

2. Pupils in the 2nd term of Grade I can learn to solve some rather
difficult problems in addition and subtraction.

CORRECTION RATE FOR THE PROBLEMS LEARNT IN 2ND TERM, GRADE 1
(Quiz after Learning the problems)

Problem
type

Pro. for
minuend

Pro. for
subtrahend

Pro. for
difference
between
2 numbers

Pro. for
a number
large
than
another

Pro. for
a number
smaller
than
another

Average
correction
rate

Number
of pupills
with

90% 89.7 % 94Z 97.6% 96.4% 93.8%

correct
answers

93.9%* 94.9%*

(%)

* Problems with data described in the opposite way

The experiment shows that while teaching the problems for finding out
the minuend or the subtrahend, if we link them with the problems for
finding out the remainder, help the children to, make clear the relation
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between the known and the unknown through diagrams, they can be
understood to be the variations of the problems for finding out the
remainder and can be solved by the children applying the meaning of
addition and subtraction that they have learned to the new circumstances.

Our experiment also shows that in teaching problems for comparing the
difference between 2 numbers, the key point is to let the children know
the way to solve the problems for finding out the actual difference
between two numbers. They are guided to decide correctly which number
is larger (or smaller) through manipulating with objects and using
diagrams(as seen below).

10000001000
0AAA.6.A i 9-6.3

Then they are supposed to find out that the larger number (nine0s)
consists of 2 parts: (1) the part lmilar to the smaller nuraber(sixAs)
which is 6 and (2) the part larger than the smaller number, which is 3.
And if we subtract the part similar to the smaller number from the larger
number, we will get the part which is larger than the smaller number.

As to the solving of the problems for finding out the number that is
larger or smaller than the known number, we can consider them to be the
variations of the problems for finding out the difference between 2
numbers. Children are taught through manipulations to decide which
number is larger, analyse the relation between the known and the
unknown and find out the way to their solutions.

The above-mentioned problems with data described in the opposite way
are taught in the same way. From the results of the experiment, though
this kind of problems are more difficult, there is no obvious reduction in
the rate of correction in the solution by children.

3. Children's thinking ability is being developed in the process of solving
problems in addition and subtraction.

In the solving of problems shown in pictures children are first trained to
distinguish between "What does the problem tellrand "What does the
problem ask you to find out?" and then select the correct operation for
solving it according to the relation between the above 2 questions. Later
exercises for supplying missing questions or missing data are given to the
children. Thus their analysing and synthesizing abilities are developed
preliminarily. Meanwhile, their reasoning power are cultivated, and their
trouble in guessing the solution at random eliminated.

The same train of thought is applied to the solving of problems with the
same types of numerical relations, such as the problems for comparing the
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difference between 2 numbers, and the meaning of addition and
subtraction is also referred to. Since children are able to use addition as
well as subtraction to solve different types of problems , their transferring
ability is also fostered. The flexibility in their thinking is developed
through doing exercises of the variations of the problems and the bad
habits of memorizing the different types and copying the formulas
mechanically are avoided. Moreover, children's ability of reverse thinking
is developed through the solution of problems for finding out the minuend
or the subtrahend and problems with data described in the opposite way,
which are also helpful to the development of the flexibility of their
thinking

IV. Conclusion and Discussion

1.The experiment shows that if the teaching materials are well organized
according to the inner link of the problems to be learnt and the principle
of proceeding from the easy to the difficult and the concrete to the
abstract, and supported by appropriate teaching methods, first-graders can
learn to solve general problems in addition and subtraction.

2. The study of the experiment indicates that excellent structure for
teaching materials in organizing problems in addition and subtraction will
play an important role in helping children to understand and grasp
numerical relations and find the ways of solving problems. It is suitable to
divide the problems in adddition and subtrraction into the following 3
groups according to their numerical relations:

1st group Find out the sum Sum & one of addends
known , find out the
other addend

Sum & one of addends
known, find out the
other addend

of 2 numbers

2nd group Find out the
minuend

Find out the Find out the
subtrahendremainder

3rd group For a number
larger that the
known number
(including data
described in
opposite way)

For difference For a number
smaller than the
known number'
(including data
described in
opposite way)

between 2 numbers
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The underlined one in each group is the prototype, and the other two in
the same group are its variants. The teaching by groups will give
prominence to the numerical relations among the problems and their
mutual connections and be convenient to form cognitive systems with
structure in children's minds. When they see any problem in addition or
subtraction , they will recognize its characteristics more easily, analyse its
numerical relations clearly and choose the way of operation correctly.

3.The study of the experiment also shows that while arranging the
teaching materials for the problems in addition and subtraction, we should
select teaching methods suited to the psychological characteristics of
children. Appropriate teaching methods will promote the successful
mastery of the ways to the solution of different problems and the
development of children's thinking ability. Owing to the strengthening of
pupils' manipulation by using objects and teachers' demonstration, pupils
are given more concrete experiences in analysing the numerical relations in
different problems and thus enabled to internalize external material
activities into intellectual activities, that is, to use their abstract thought for
analysing and reasoning. In the process of teaching children to solve
problems in addition and subtraction, attention should be paid to the
significance of language in the development of their thinking. Asking
children questions in order together with manipulation and demonstration
will help them to distinguish the information given in the problems from
what they ask for, understand the relations between these two and know
how to choose the way of operation. All this will urge children to transform
their sound language into silent language, namely, to correctthinking.There
exists great divergence among children in their understanding of the
content and facts of the problems, their analyses of the numerical relations
and their choice of the ways of operation. Since the teachers participating
in the experiment paid attention to the coaching of backward pupils
according to their special needs, especially helping them to learn to think
and impro4e their ability to analyse the problems, better results were
achieved. In the quiz given after the teaching of the problems in addition
and subtraction, only 2.5 St of the pupils did not pass. And in the final (dam
there was no failure. This shows that the thinking ability and abilities for
solving problems of the backward pupils can be raised so long as the
teaching methods adopted are appropriate:
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BEYOND RATIO FORMULA

FouLai Lin

Department of Mathematics

Taiwan Normal University

This paper analyses the concept of ratio beyond reasoning
on nonintegral ratios. Some items for testing the
understanding of ratio beyond ratio formula were analysed.
Results of the interviews suggested that the level of
understanding ratio might be deeper than in previous
studies (e.g. Hart, 1981). Errors of a particular
geometric task suggested some ideas for developing items
for further study.

INTRODUCTION AND METHODOLOGY

In the previous proceedings of PME 1XI, there are about n (n > 35)
research reports on ratio and proportion. All those reports dealt with
the concept of ratio to the depth of the socalled 'understanding of
level four' (Hart, 1981), which means that one must recognize that ratio
is needed for the questions, and questions are complex either because
they deal with noninteger ratios, such as 5:7, or because of their
setting. One who can use the ratio formula (a:b = c:d) correctly can
always deal successfully with the tasks used by those researchers.

However, beyond the ratio formula, do there still exist
developmental hierarchies of understanding ratio? This ongoing research
aims to study this problem. Instead of working on searching for the
roots of elementary proportional strategies (e.g. Streefland 1984, 1985,
and Tourniaier, 1986) this work considered the problem from the other
end.

Observing students working in their classrooms, we found that even
very able senior high school students, age 16+, were using a familiar
relation: sinlA + cos2A = 1 to solve the question:
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"In AABC, given sinA:sinB:sinC = 2:3:4, find cosA:cosB:cosC = ?"

As follows: sin2A:sin1B:sin2C = 4:9:16,
* 1-sin2A:1-sin28:1-sinaC = (1-4):(1-9):(1-16) = 3:8:15

cosA:cosB:cosC = 417: /Sr: fTS.

Referred to the above misconceptualised phase *, we developed an
interview task:

Given a:b = 3:4, find a - 1 : b - 1 = ?.

With this task, we had interviewed nine students, age 15+, of
understanding level four from one sample school in the previous ratio
study (Lin et al, 1985), and found that only one out of nine could cope
successfully with this task. This suggested that this task was harder
than the items in the previous study (Lin et al, 1985).

Thus, this task, denoted by task A, and a physical task, were used
for interviewing at this beginning stage of our study. Five students of
understanding level four in a senior high school, aged approximately 17,
were identified and interviewed. All of them could cope with task A.
However, their responses were at different levels. These two interview
tasks and students' responses in the interviews will be analysed in this
paper.

Moreover, in order to investigate some errors students might make
beyond ratio formula, we will analyse the incorrect responses of a
geometric item, which was developed in terms of the task A, in the
national entrance test (1986) for further study in senior high school in
Taiwan. Out of about 145,000 examinees, age 154,,16+, we randomly
sampled 200 copies of the written test papers for this study.

ANALYSIS OF TASKS AND STUDENTS' RESPONSES

1. Task A

Given a:b = 3:4, find a - 1 : b - 1 F ?

At the syntactic surface structure level (Skemp, 1982) of the
symbol system a:b = 3:4, we have two letters spatially related to two
numbers. At the deep structure level it represents:

(1) two variables a and b
(2) an equivalence class defined by an-equivalence relation (^4 in the

set of ordered pairs of numbers, formally indicated by
(x, y) r. (3, 4) iffx:y = 3:4

(3) (a, b)^. (3, 4) but it may not necessarily be true that
(a, b) = (3, 4)

(4) (a, b) depends not only on (3, 4) but also an implicit parameter.

Bearing this deep structure in mind, to respond successfully to the
given question a - 1 : b - 1 = ?, one needs to realize that
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(5) the answer could not be numerical
(6) a parameter has to be included in the answer
(7) the parameter depends completely on a or b.

During the interviews, the question "what does the parameter mean?"
was asked. Therefore the five interviewees had to go deeper than just
providing a parameter. They were generalizing from their experiences to
the meaning of the parameter. With respect to the answer
a - 1 : b - 1 = 3k - 1 : 4k - 1, three different levels of responses to
the question "what is k?" were found.

(i) Two, Lin and Yang, out of five viewed k as the integral greatest
common divisor of a and b, and interpreted a and b as two
unknowns. Thus k is unique.

(ii) Two, Son and Chou, out of five said k was any non-zero real
number, and interpreted a and b as two variables.

(iii) One, Tsai, out of five felt no need to give.a closed decision and
said "k is a variable; the number system which k belongs to will
be determined by variables a and b".

Tsai also said that "If we are only given a:b, we couldn't find
a - 1 : b - 1. We have to know a:b:l, i.e. a and b needed to be
decided". It was surprising in that Tsai mentioned the numerical unit
1, which does not depend on any arbitrariness. With the unit 1, a:b
then depends on only one parameter. Thus with the given condition
a:b = 3:4, a and b can be completely determined.

2. The Physical Task

"A thermometer showing 40°C was put into a swimming pool full of
water at a temperature of 20°C, after 3 minutes-the thermometer was
32°C. Try to predict the temperature of this thermometer after
4 minutes and after 9 minutes."

The surface structure of this item is similar to the model of
ratio, given three numbers to find the missing value. However, an
implicit hypothetical model based on common sense was required to
recognize that the model of ratio was not appropriate for this item.
The reason for a given time being 9 minutes in the item is to examine
how students will reflect while they faced a conflict by a lower
temperature of the thermometer than the water if model of ratio was
applied.

The model of common sense was very attractive to Tsai, who
recognized that ratio was not appropriate for this item without any
algorithm.

Tsai: "How can you solve this.... Can't solve it with proportion,
because proportion means temperature will be decreased with constant
speed. Absolute nonsense. When the difference of temperature is
small, the decreasing speed will slow down."

Tsai himself expressed his understanding of dynamic notion of ratio,
i.e. moving proportionally means moving with constant speed.

339



323

Chou showed his recognition ability after he did his proportional
algorithm on 9 minutes. The other three, Lin, Yang and Son, all felt
happy about their conclusion that the temperature of the thermometer
would reach the same as the water by the time it had decreased to 20°C.

In terms of their recognition ability and interpretations of letters
a, b and k in a:b = 3:4, a = 3k and b = 4k, it seems that the responses
of (Lin, Yang) and (Chou, Tsai) could be grouped at two levels.

Lin and Yang have not shown any recognition ability on the physical
task. They interpreted a and b as generalized numbers and k as the
greatest common divisor of a and b.

Chou and Tsai have strong recognition ability. They interpreted
a and b as variables and k as a variable within a number system to which
a and b belongs. In addition, Tsai's responses provided an index to
indicate how deeply a senior high school student could grasp the notion
of ratio.

3. The geometric task

Given that the perimeter of AABC is 21 and <BAD = <CAD.

(1) .find AB:AC = ?
(2) find AE:AF = ?
(3) find eAEG:AAFG = ?

B 3
In (1) the necessary information BD:CD was given and an implicit

theorem to relate AB:AC and BD:CD was required for a satisfactory
solution. In (2), the data about AB:AC and AB + AC must be carefully
inter-related to produce a satisfactory solution. Two segments BE and
CF of length 1 were designed to match the form of task A. Item (2) was
our main concern, and the results are as follows:

Out of 200 written test papers sampled for this study, 53 were
correct, 76 showed no response, and 71 gave incorrect responses. The
percentage of correct responses, 26.5%, of those 200 papers was close to
the percentages of correct responses in the population of entrance test
data, which was 21%.-26% in different areas of Taiwan.

Out of 71 incorrect responses, 7 were non-numerical answers and the
rest provided 20 different numerical answers, e.g. 3:4 (17), 2:3 (9),
1:2 (9), 1:1 (4) ... etc. The number in each bracket denotes the
frequency. Analysing those incorrect responses, we found that

a. all responses omitted a necessary piece of information, either the
perimeter of AABC or the ratio for sharing with a given sum of two
segments.

b. the relation between the incorrect strategies and the numerical
answers was not in one-to-one correspondence.

We have classified five different error patterns which would
include most of the incorrect responses.
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(1) Segments EF and BC do look parallel, so many students applied
explicitly or implicitly the incorrect relation, EF parallel to BC,
for their solutions. This strategy could provide different
numerical answers depending on which implications of parallelism
were used, e.g. "AE:AF = BE:FC = 1:1" and

"AE:AF = EG:FG = BD:CD = 3:4".

(2) The algorithm "AB:AC = AE + 1 : AF + 1 t AE:AF = 3:4" indicated
that the student was applying an incorrect pattern
"c + 1 : d + 1 = c:d. Students' responses might be based on their
experience with " A c c= = +b b

and they may have applied a corollary of the hidden 'theorem':
"everything is OK as long as you do the same thing to both sides of
an equation" (Lesh et al. 1987).

(3) The algorithm "AB:AC = 3:4, 3 1 = 2, 4 1 = 3, AE:AF = 2:3"
indicated that the student was applying an incorrect pattern
"a:b = 3:4 > a = 3, b = 4". Students were attracted by the
surface structure of the symbol system a:b = 3:4. Their attention
was drawn away from its deep structure.

(4) Students might derive an equation with two variables from
AE + 1 : AF + 1 = 3:4. To solve the equation without using the
information AE + AF = 12, they were struggling in performing
certain operations to the equation for their answers, e.g.
identified two variables into one, tried to eliminate the constant
term, etc. The following particular algorithm
"AE + 1 : AF + 1 = 3:4, 3AF 4AE = 1, tfl31 AE:AF = 2:3"
reminded us that ratio reasoning is inteP2related to finding
integral solutions of a linear equation.

(5) Students might exhibit their competence for finding the sum of two
segments, AB + AC = 14 or AE + AF = 12, and then degenerate to a
lower level of operation. They intuitively added on some more for
a bigger one and subtracted some for a smaller one; e.g.
"21 (3 + 4 + 2) = 12, AE = 4, AF = 8, AE:AF = 1:2" or
"21 7 = 1 4 , 14+ 2 = 7 , 7 + 1 =8 (AC), 7 1 =6 (AB) ..."

Data on the incidence of the above five error patterns have been
collected and are being analysed.

REMARKS

The tentative results of the investigation at this stage suggested
that these might be hierarchical levels of understanding ratio and
proportion beyond level four in the previous studies (Hart, 1981; Lin et
al, 1985). This hypothesis requires further investigation.

Referring to error analysis on the geometric task, some ideas for
developing items for further study have emerged. We require:
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(1) items to show the interrelation of ratio reasoning and finding
integral solutions of linear equation.

(2) items to test students' images or 'sense of or 'stories' that
interpret the operation within a proportion, e.g. changing the
middle terms in a proportion.

(3) more recognition items of different understanding levels.
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EYE FIXATIONS DURING THE READING AND SOLUTION OF
WORD PROBLEMS CONTAINING EXTRANEOUS INFORMATION:

RELATION TO SPATIAL VISUALIZATION ABILITY

Carol J. Fry
The Ohio State University

Abstract. The present study utilized eye movement
monitoring equipment to investigate the relationship
between problem solving behavior and spatial
visualization ability in a college sample. Results indicate
that spatial visualization ability is positively related to
the percentage of time spent viewing information
essential to a problem's solution and negatively related
to the time spent viewing nonessential material.

INTRODUCTION

Eye movement research has great potential for examining aspects of
mathematical problem solving which are not obtainable by traditional
means such as verbal protocols and error analysis. Schoenfeld (1985)
has urged the use of a variety of methodologies to examine problem
solving behavior: "Generally speaking, any methodology...may highlight
some aspects of behavior and may obscure or distort others. It is thus
prudent to examine particular aspects of problem-solving behavior
from as many perspectives as possible, to help separate what resides in
the interaction between behavior and methodology" (p. 316). The
present study used eye movement monitoring equipment to explore
the relationship between spatial visualization ability and the
percentage of time spent viewing extraneous and essential information
in two-step word problems.

BACKGROUND

Eve Movement Research. The monitoring of eye movements has
been widely used in reading research for nearly a century (for reviews.
see Just & Carpenter, 1980: Rayner. 1978: Tinker. 1958). Relatively
few investigators, however, have employed this technique to study
students' approaches to mathematical material, such as equations,
graphs. word problems, and textbook prose (De Corte & Verschaffel.
1986. 1988: Fry, 1987: Suppes. Cohen. Laddaga. Anliker, & Floyd. 1983:
Vonder Embse, 1987).
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Eye movement monitoring instruments produce a record of the
location and duration of a subject's eye fixations. For relatively
uncomplicated mathematical tasks. eye movement registration
provides an unobtrusive way to physiologically monitor information
processing strategies. Verbal reporting of solution methods is not
necessary in this research, although such reports can provide
corroborating data on the manner of information processing evidenced
by the eye movement record.

Spatial Skills and Mathematical Performance. Driscoll (1983) and
Suydam (1980) have provided summaries of characteristics that
distinguish successful from less-successful problem solvers. Both
reviewers report that successful problem solvers are better able to
generalize across problems, identify relevant information, ignore
extraneous information, perceive the underlying structure of a
problem. and readily identify and implement an orderly plan of attack.
Many researchers believe that these characteristics are behavioral
manifestations of underlying cognitive styles and abilities. The
literature on problem solving is replete with studies correlating
problem solving performance (outcomes and strategies) with numerous
variables, particularly spatial visualization ability. However. the exact
nature of the positive relationship often found between this particular
ability and problem solving performance is not clear. This study was
designed to test the hypothesis that spatial visualization ability is
positively related to the percentage of time spent focusing on essential
information in word problems containing nonessential numerical
information..

METHODOLOGY

Sample. College undergraduates enrolled in the second of two
developmental mathematics courses offered at The Ohio State
University served as subjects. The final sample consisted of 26 males
and 11 females: the median age of the sample was 20.4. and the mean
age was 23.1.

Test of Spatial Visualization Ability. The.Mental Rotations Test
(Vandenberg, 1971. cited in Vandenberg & Kuse, 1978) was selected as
the measure of spatial visualization ability. Subjects were given three
minutes to complete each of the two 10-item sections. For each test
item, subjects decided which 2 of 4 three-dimensional objects differed
from an original in angular orientation only; each choice was denoted
with an "X." Figure 1 depicts an item from Part I of this test.

SST COPY AVAlgail
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4

figure 1. Sample Item from Vandenberg's Mental Rotations Test
(MRT)

Eve Movements. Eye movement data were collected using the
Micromeasurements System 1200: An IBM PC-XT containing an IBM
Data Acquisition and Control Board was responsible for presenting the
word problems to the subject and for collecting and formatting the eye
position data received from the System 1200 computer. Data on the
subject's eye position (horizontal and vertical components) were
updated sixty times a second. A fixation was defined as three or more
consecutive 1/60-second pupil position readings indicating the same
horizontal and vertical positions.

°Word Problems. Each subject viewed three 2-step word problems
containing extraneous numerical information (see Figures 2-4).
Subjects were given 30 seconds to view and try to mentally solve each
problem.

ANALYSIS

A rectangular grid was superimposed on the text so that the
percent of total fixation time for specific regions within each word
problem could be analyzed. Horizontal dimensions varied slightly from
problem to problem due to the varying locations of features of
interest. Grid specifications isolated the following types of information:
the essential numerical (ESSENUM). the extraneous numerical
(EXTNUM). the essential verbal (which together with ESSENUM formed
ESSTOT). the relatively nonessential verbal (VEHICLE). and the
question. Figures 2.3. and 4 show the grid systems and the labels
assigned to each block of information for the three word problems.
The percent of total fixation time within each block was calculated by
dividing the total fixation time within that block by the total fixation
time for that problem (30 seconds minus the total saccade time).
Scores on the Mental Rotations Test were correlated with each of the
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five fixation variables described above, as well as with the ratios of
EXTNUM to ESSENUM and EXTNUM to ESSTOT.

0

(12)

A fully loaded

(vEnci..8)

freight train having

(13) (vEnci.8)

10 cars and

(1k) (.88088)

(17)

an engine weighs

(ESSTOT)

1000 tons and

(18) (ESSENUM)

is 400 feet long.

(19) (laTtillM)

(22)

The engine itself

(Essrar)

weighs 200 ton,

(23) (Essimun)

What is the

(24) (Q0 Evricii)

(27)

average weigh

(00.11.)

of each car?

(28) (0mm,ico

Figure 2. Analysis Blocks for Problem 1 and Their Designations

Last week, Gene

(ik) (VEHICLE)

worked 6 hours

(15) (E.s.$)

a day.deliverilg

(16) (Ess Too

a total of

(17) (VEHICLE)

360 telephone

(20) (g(TN08)

books. If he received

(21) (vDr10,2)

$120 for

(22) (F.8.014)

5 days' work,

(23) (ESSFNUM)

how such did lie

(26) (0.Tria)

earn per hour'

(27) (QmoTia)

Figure 3. Analysis Blocks for Problem 2 and Their Designatirmq
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Chuck, Al, and Ilizaheth

(12) (mic,....)

receivefa

(13) (VEHICLE)

total of $128

(14) (Ex Thum)

for 4 hours of washing

(17) (Essmum)

windows in

(18) (VEHICLE)

a dormitory having

(19) (VEHICLE)

5 floors. There

(22) (EssENum)

were 28 windows on

(23) (man.)

each floor. On

(24) (, ssTor)

the average, how

(27) (Qun-nal)

any windows were

(28) (Qu num)

washed per hour?

(29) (QuEsna0

Figure 4. Analysis Blocks for Problem 3 and Their Designations

RESULTS AND DISCUSSION

Results of the correlational analyses appear in Figure 5. Spatial
visualization ability was positively related to the percent of total
fixation time on the essential numerical and verbal information in
Problem 3 ( L = .37 for MRT and ESSENUM: L = .36 for MRT and
ESSTOT). Spatial ability was negatively related to the percent of total
fixation time on the extraneous numerical information ( L = -.56) and to
the two ratios described in the Analysis section above ( L. = -.53 for
both.) Subjects with high spatial visualization ability spent a greater

.percentage of time fixating the essential information and less time
fixating the extraneous numerical information than did subjects with
low spatial ability. Although the correlation coefficients failed to reach
significance in Problems 1 and 2, a similar fixation pattern was noted.

Perhaps the placement of the extraneous information in Problem 3
contributed to the robustness of the findings in this particular problem.
The extraneous numerical information was placed in the first line of
Problem 3 but in the second and third lines of Problems 1 and 2.
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Further. in Problem 3. it was the first number mentioned.
In Problem 1. it was the third number mentioned, and in Problem 2. it
was the second. Subjects with poorly-developed spatial skills may
attend to extraneous numerical information for a longer period of time
if this information occurs before the essential numbers are mentioned
or before the structure of the problem is apparent.

.60

.50

.40

.30

.20_

.10_
L.)

;41

ESSENUM ESSTOT OUEST1ON VEHICLE EXTNUM X/E X /7

-.10_

-.20_

-.30_

40_

-.50_

- .60

- 70

05 Significance Level: I r I - .30

Problem 1
Problem 2
Problem 3

,Fisture 5. Percent of Total Fixation Time Variables and MRT Scores
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CONCLUSION

The findings of this study suggest that students with well-
developed spatial skills may perform better than students with poorer
spatial skills on mathematical problem solving tasks because the
former can more readily identify and attend to the essential
information in word problems. To help elucidate any information
processing differences that may exist between subjects scoring low on
the MRT and those scoring high on this test, an eye scan-path analysis
is planned.

The potential of eye tracking research to advance theories of human
information processing and to inform mathematics educators of
individual differences in problem solving behavior appears
considerable. Investigations utilizing eye tracking technology are
continuing at Ohio State and are in the planning stages at the
University of Illinois (A. Baroody. Personal communication. January 15.
1988). At Ohio State, researchers are examining how undergraduates
solve problems in algebra and geometry and what effect question
placement may have on eye movement patterns.
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THE MEANING OF 'X' IN LINEAR EQUATION AND INEQUALITY

: PRELIMINARY SURVEY USING COGNITIVE CONFLICT PROBLEMS
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ABSTRACT

In solving linear equations and inequalities in which the solution set
is empty or contains all numbers, the disappearance of x could provoke

cognitive conflict in students. By analyzing the students' way of
resolving this conflict, this paper aims to clarify the meaning of
literal symbol x to junior high school students of Japan. The findings
are as follows: (1) The disappearance of x makes some students try to
incorporate x in the final expression or conclude that there is "no
answer". These students presuppose the existence of x and regard x as an
unknown quantity. (2) Some students pay more attention to the
operation itself and the structure of expressions than to finding a
concrete number for x. These students try to examine the truth or
falsehood of the intermediate expressions. They may regard x in
equations and inequalities as a variable (= a place holder). (3) Some
students accept the final expression with no x as an answer on the
basis of their belief that to solve equations and inequalities means to
get the final result of transforming the expressions. These students
consider x to be no more than an object of transforming the expression.

I. INTRODUCTION

To students, the meaning of x refers mainly to the form such as x=A or x<A

obtained by solving equations or inequalities. Some, however, understand that x

stands for an unknown quantity and presupposes its existence. When confronted

with an equation or inequality in which solution set is empty or contains all

numbers, cognitive conflict is provoked since x disappears in the final step.

By analyzing the students' way of resolving this conflict, this paper aims to
examine the meaning of x to the students.

The Japanese students are generally good at solving linear equations and

linear inequalities. However, students may only know what to do without knowing

why, or as in R.R. Skemp's terminology,"instrumental understanding"(Skemp,R.R.

1976). This study provides an insight into this observation because the meaning

of "x" lies behind the students' procedural efficiency in solving equations and

inequalities. It should be noted that the confusion of literal symbols with

letters of the alphabet does not occur in Japan because literal symbols in

algebra differ from the Japanese written language. Thus, the difficulties

experienced differ from those found in English speaking nations( Wagner,S. 1983

3 5 1
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). Instead, it is the abstract nature of, and the unfamiliarity of Japanese

with the literal symbols which is a problem for Japanese. Though the Japanese

seem to be good at manipulating them, this may be superficial. How they grasp

the meaning of the literal symbol x is therefore worth investigating.

A thorough diagnostic interview and teaching experiment is deemed necessary

for complete understanding but this research is limited to the use of cognitive

conflict problems.

II. EDUCATIONAL BACKGROUND OF THE SUBJECTS

Owing to the difficulty mentioned above, literal symbols are carefully

introduced into the Course of Study, which is prepared by the Ministry of

Education. Although details concerning contents and teaching methods are left

to the teachers' discretion, the Course of Study is very influential. Textbooks

are likewise approved by the Ministry.

(1) Literal symbols in prescribed textbooks

Algebra does not exist as an independent subject in school mathematics in

Japan, but algebra is systematically included in various parts of the

mathematics curriculum. In 3rd grade of elementary school, the frame word (

is introduced, and in 4th grade, an additional frame word is introduced. The

following is an example taken from a textbook (4th grade):

A grid of nails spaced lcm away from each other is enclosed by an

18cm string. State lengths of the breadth and width of the various

rectangles formed. If 0cm represents the breadth and 2Scm

represents the width, what is the relationship between C) and ?

In 5th grade, literal symbols such as "x" and °a" are introduced to stand

for quantities formerly represented by the frame words.

(2) Linear equation and inequality topics in prescribed textbooks

In 1st year of junior high school, translations of concrete situations

expressed in ordinary language to mathematical sentences using letters and vice

versa, are emphasized. ,calculations of algebraic expressions required for

solving linear equations are studied. Students, then, learn to solve linear

equations using the attributes of equality.

In 2nd year, students are required to further develop their abilities to

find quantitative relationships, and to express such relationships in a formula

by using letters. Computations of a simple formula using letters, and the four

fundamental operations are emphasized. By using properties of inequality,

students learn to solve linear inequalities. (Miwa,T. 1987)

The students surveyed were eighth graders (N=42) at a national junior high

school in Tokyo who had just learned to solve linear inequalities according to

the prescribed textbook. It should be noted that they had no prior experience

352



336

with cognitive conflict problems.

III. THE PROBLEMS GIVEN

The following linear equations and linear inequalities problems were given

to students to provoke cognitive conflict.

I. Mr. A solved the equation 3(X+1)-4=3X as follows:

3(X+1)-4=3X

3X+3-4=3X

3X-3X=-3+4

0=1 0

Here Mr.A got into difficulty.

1. Write down your opinion about Mr. As solution.

2. Write down your way of solving this equation 3(x+1)-4=3X and your reasons.

II. Solve the following inequalities. Please show how you worked out the problem

and give reasons for using this method.

CD 1-2X<2(6-X)

D 2(X-1)+3>2X+1

Problem I is an example of a problem with an empty solution set. To show

the "disappearance of x" clearly, the part with which "Mr. A got into
difficulty" is expressed as "0=1." If it were written as "OX=1," students

would focus on the meaning of dividing by 0 rather than meaning of x.

The inequalities in problem II are examples of a solution set with all

numbers and an empty solution set. In CD the number on the right side was

increased, because in the pilot study it was found that if the final expression

was given as 0<1, the students would regard the problem to have "no answer" on

the basis that no integer exists between 0 and 1. In 0 students got the final

expression 0>0. This problem was given to determine how the concept of x is
influenced by O.

W. RESULTS

(1) Overview Findings

The number of students who made the correct answers are given as follows:
Problem I Problem IIC Problem II 0

38 11 29

Students' explanations are as follows:

Prob.I Prob.II (I) Prob.In
Final expression is false(true) 16 (2) 11

intermediate expression is false(true)* 11 (9) 5
X in disawiared

5 0 0
Oth,,r

6 0 4
ro, n;,

0 0 9

38 (11) 29
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[Note] * Students do not aim at the most simple equations and inequalities

since x disappears in the process of transformation. Therefore, in.this paper,

the expressions which students finally got will be called the "final

expressions" and the previous ones. the "intermediate expressions." As for the

intermediate expression being false, the explanation as follows : "In the

equation 3X-1=3X, 3X-1 cannot be equal to 3X because we are subtracting 1 from

the left-hand 3X. If we substitute 2 for X, the number on the left side is 1

smaller than that on the right side, as in 5=6."

In problems I and II CD, where the solution set is empty, students tried to

account for the disappearance of x by the falsehood of the final and

intermediate expressions, but they did not explain of the disappearance of x.

However, in problem II a where the solution set consists of all numbers, the

focus was on "what x was" in this inequality, the solution of equations and

inequalities, and "what answers were" since the final expression is still true

even if x disappeared. Students were then forced to clarify the meaning of x

and of solving equations and inequalities. In the following section the

students' explanations to problem II@ will be considered.

(2) Answers to Problem II CD

The students' answers to this problem can roughly be divided into the

following : X<0 or X<11, there is no answer, 0<11, and all numbers. The point

which students got into trouble with, as in problems I and In, was that x

disappeared in solving the inequality. Cognitive conflict provokes between

previous experience, which states that the answer to an inequality never fails

to obtain an expression containing "x", and the present situation, where x

disappears. Moreover, the logic in concluding no answer" based on the

falsehood of the final and intermediate expressions in problem I and II CD may

also cast another difficulty on the students. In this case, students may have a

cognitive conflict between the situation where the disappearance of x means the

falsehood of the final and intermediate expressions, and the situation where

the final and intermediate expressions are still true in spite of the

disappearance of x. The students' reasoning reflects two ways of resolving the

cognitive conflict produced by the disappearance of x. One is to persistently

regard the answer as an expression containing x, and the other is to accept the

answer not containing x. The students' answers to this inequality will be

classified as follows:

(i) By giving the correct answer (11 persons)

(ii) By giving an answer to containing x (17 persons)

(iii) By giving an answer not containing x (3 persons)

(iv) By giving no answer (4 persons)

(V) Other (7 persons)

(i) By giving the correct answer
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11 students gave the correct answer, and 10 of these students also gave

the correct answers to the other two problems. As for the students', reasons, 2

students, focusing on OX<11, considered that "0 is always 0 regardless of what

number it is multiplied by." The other 9 students focused on the intermediate

expression. For instance, student A, citing the expression -2X<-2X+11, gave the

explanation that "-2X and -2X are equal no matter what number is substituted

for x, so that -2X plus 11 is necessarily bigger than -2X." He subsequently

explained that "since I don't know how to deal with the form 0<0, I will give

the intelligible form -2M<-2X+11 which is easy to understand ." From the
student's substitution for x, it can be inferred that he regards x as a variable.

(ii) By giving an answer to containing x

These students regard x as the answer to equations and inequalities

finally obtained as a result of the transformation. For them, to solve
equations and inequalities is to find the value of x, thus they try to
incorporate x in the final expression. At superficial level, the answers can be
classified into two types:

T1: X<1 or X<11 persons)

T2:. "no answer" (10 persons)

Students of T, type can be further divided into two: those who answered X<0

or X<11 on the basis of the final expression 0<11 (student B), and those who

made use of X<11+X (student C).

Student B: 1-2X<12-2X

-2X+2X<12-1

X<11

Answer: X<11 or no answer

Student 8 stated in problem I that "it is appropriate to assume OX=X since
0 is not 1, or no answer" giving the above transformation for the same reason.

Student C: -2X+2X<12-1

-X+2X<11+X

X<11+X

Student C noted that "I think I have to keep x." In problem I he also
notes that since x must be kept in the final expression, I managed to leave x
by multiplying and adding 3X-3X=1."

In Tt type, there was a student(student D) who tried to leave x by making
an intentional mistake in the calculation as follows:

Student D: 1-2X<2(6-X)

-2X<2(6-X)-1

-2X/6-X<2-1

-2X/6+2X/X<1

-X/3<-1

X>3

Reason: "Because I realized that in this way I could keep,x."

Student D found the value of x in problem I to be -4/3 in a similar way,

noting that "to solve an equation is to find the value of x, so that 3X-3X=0 is
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nonsense." From this we may guess that it was not difficult for him to

calculate 3X-3X. This is because he persistently tried to incorporate x in the

final expression, disclosing a "belief" which lies behind the solution of

equations and inequalities.

On the other hand, type 12 students finally concluded that there was no

answer. Some students concluded this based on the disappearance of x in both

the equation and the inequality (student E), and other students came to this

conclusion based on the falsehood of the final expression of the equation and on

the disappearance of x in the inequality (student F).

Student E: 1-2X<12-2X

-2X+2X<12-1

0<11 > no answer

Reason: "X disappears in -2X+2X." (To problem I he noted that

"this problem has no answer because x disappears.")

Student F: "The value of x cannot be found because x disappeats in

-2X+2X.O. Hence no answer." (In the problem I he noted that

"it cannot be that 0 equals 1. 0 is always O. Hence no answer.")

Thus the students of T2 type concluded that there was "no answer" since the

result of the calculation did not contain x. They are similar to Ti type in

that they believe that the answer to inequalities shoud contain x. That is,

both types of students thought that the solution to equations and inequalities

is to get a final expression containing x. For them x is the answer to equations

and inequalities, necessarily obtained in the form such as X =a or X<b.

(iii) By giving an answer not containing x

There were 3 students of this type. Student G considered that solving

equations and inequalities is to calculate on the basis of the properties of

equations and inequalities, and that the answer (even if it does not contain x)

is the final expression.

Student G: 1-2X<12-2X

0<11

Reason:"I found the answer by calculating the value in the parenthesis."

Student H noted in problem 110 that an ordinary calculation would give the

result on the left part of this paper, but there seems to be no answer because

0>0 is obviously false. On the other hand, he gave 0<11 as the answer to the
problem II CD. In the case where the final expression was true, he considered

it to be the answer, but if it were false, he concluded that there was "no
answer".

(iv) By giving no answer

This type refers to students who gave no explanation or, if any, gave the
impression of being at a loss as to what to do. Most of the students of this
type concluded that there was no answer" without giving any reason.

(V) Other

356



340

Students of this type. gave explanations which focused on the division by 0

or concluded that there was "no answer" from X=0 because the left side of the

final expression contains O.

V. THE MEANING OF X IN LINEAR EQUATION AND INEQUALITY

In this section the problem of how students grasp the meaning of x in

equations and inequalities, based on the above results, will be discussed.

(1) The Unknown Quantity and the Variable

That students regard the x in equations and inequalities as an unknown

quantity can be assumed, based on their previous history of learning. In fact it

was in the process of solving a problem containing an unknown quantity that the

equation first appeared. That is, to solve an equation meant to find the

unknown, the existence of which was assumed. Therefore students believe that the

relationship between quantities is the issue in expressing the quantified

relation in terms of x, and the existence of x is not questioned. For students

who presuppose the existence of x, it is predicted that they are likely to get

into difficulty with the interpretation of a final expression which does not

contain x. Thus the incompatibility with their experiences would produce

cognitive conflict. As a result, some students, incorrectly incorporate x into

the final expression (T, type), and other students conclude that there is "no

answer" based on the disappearance of x (T2 type).

On the other hand, students who seem to regard x as a variable can come up

with the correct answer .on the basis of the intermediate expressions by

interpreting x to take various values, as in the case of student I (( i )-

type):

Student I: 1-2X<12-2X

replacing -2X with 'T

1+ ::<12+E]

Reason: "Because the sign of the inequality remains the same even if we

add the same number to, or subtract it, froth both sides of

the expression. Any number will do fora hence the same applies for x."

Student I may take x as a place holder by replacing -2X with 7. Note that

he focused on the calculation of adding -2X to both sides without paying

attention to finding a concrete number for ,-2X or X. When he considered the

intermediate expressions, he paid more attention to the operation itself and the

structure of the expressions than to the objects of calculation such as -2X,
+2X, 1, 12. This is why most (i )-type students were able to evaluate the

intermediate expressions. This indicates that there were some students who
understood x as a variable (= a place holder). On the other hand, (ii)-type
students, who regarded x as an unknown quantity, tried to find a concrete
number for x so they gave answers such as X<1 or X<11.

(2) The Meaning of X as the Answer to Linear Equations and inequalities
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To solve equations and inequalities means to find the set of values of x

that guarantees the truth of the equation and inequality. As shown in section Ill,

however, (ED-type students, who thought that the solution to equations and

inequalities can be reduced to mechanical processes, had the tendency to

perfunctorily give an answer not containing x, or to conclude there is "no

answer" if the final expression was false. For these students, the goal of

solving equations and inequalities is not to find the value of x, but to get the

final expression by transforming the original equation and inequality.
Therefore the character x in equations and inequalities is regarded as a mere
element involved in the process of transforming expressions, and in this sense a

final expression with no x can serve as the answer.

CONCLUSION

1 ; Where the solution set is empty or contains all numbers in equations and
inequalities, the disappearance of x makes some students try to incorporate x in

the final expression or conclude that there is "no answer". These.students

presuppose the existence of x and regard x as an unknown quantity.

CV. Some studdnts pay more attention to the operation itself and the

structure of expressions than to finding a concrete number for x. These students

try to examine the truth or falsehood of the intermediate expressions. They may
regard x in equations and inequalities as a variable (= a place holder).

C3) Some students accept the final expression with no x as an answer on the
basis of their belief that to solve equations and inequalities means to get the

final result of transforming the expressions. These students consider x to be
no more than an object of transforming the expression.
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